Abstract P249: Central Nervous System Control of Plasma Aldosterone and Endogenous Ouabain in Angiotensin II-Salt Hypertension

Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Jiao Lu ◽  
Hong-Wei Wang ◽  
Marzieh Keshtkar-Jahromi ◽  
John M Hamlyn ◽  
Frans H Leenen

High salt intake markedly enhances hypertension induced by Ang II. We evaluated peripheral mechanisms which may amplify central mechanisms activated by Ang II-salt. In the 1 st exp, Wistar rats were sc infused with Ang II at low dose of 150 ng/kg/min together with 2% high salt diet for 14 days. In the 2 nd exp, MR blockers (eplerenone, spironolactone), ENaC blocker (benzamil), AT 1 R blocker (losartan) or vehicles (Veh) were icv infused combined with Ang II-salt. BP was recorded by telemetry. Plasma corticosterone (Cor), aldosterone (aldo) and endogenous ouabain (EO) were measured by RIA. Gene expression was assessed by real-time qPCR. Ang II alone caused a small increase in MAP (112±1 vs. 99±1 mmHg), but BP was markedly increased by Ang II-salt (152±4 mmHg, P<0.05 vs. others). BP increases to Ang II-salt were largely inhibited by central infusion of MR blockers, benzamil or losartan. Only Ang II together with salt increased plasma aldo, Cor and EO. In the adrenal cortex, both Ang II alone and Ang II-salt increased CYP11B2 expression but neither affected CYP11B1, Hsd3b1 or AT 1 R mRNA expression. Central blockades significantly (p<0.05) lowered plasma aldo and EO in rats on Ang II-salt. Central blockades had no effect on Hsd3b1, CYP11B1 and AT 1 R mRNA but markedly decreased Ang II-salt induced CYP11B2 expression in the adrenal cortex. Together, these results suggest that in Ang II-salt hypertension, Ang II-AT 1 R signaling and MR-ENaC pathway in the brain increase plasma aldo and EO, which may amplify BP responses to central mechanisms and contribute to severe hypertension by Ang II-salt vs Ang II alone.

2017 ◽  
Vol 114 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Jiao Lu ◽  
Hong-Wei Wang ◽  
Monir Ahmad ◽  
Marzieh Keshtkar-Jahromi ◽  
Mordecai P Blaustein ◽  
...  

AbstractAimsHigh salt intake markedly enhances hypertension induced by angiotensin II (Ang II). We explored central and peripheral slow-pressor mechanisms which may be activated by Ang II and salt.Methods and resultsIn protocol I, Wistar rats were infused subcutaneously with low-dose Ang II (150 ng/kg/min) and fed regular (0.4%) or high salt (2%) diet for 14 days. In protocol II, Ang II-high salt was combined with intracerebroventricular infusion of mineralocorticoid receptor (MR) blockers (eplerenone, spironolactone), epithelial sodium channel (ENaC) blocker (benzamil), angiotensin II type 1 receptor (AT1R) blocker (losartan) or vehicles. Ang II alone raised mean arterial pressure (MAP) ∼10 mmHg, but Ang II-high salt increased MAP ∼50 mmHg. Ang II-high salt elevated plasma corticosterone, aldosterone and endogenous ouabain but not Ang II alone. Both Ang II alone and Ang II-high salt increased mRNA and protein expression of CYP11B2 (aldosterone synthase gene) in the adrenal cortex but not of CYP11B1 (11-β-hydroxylase gene). In the aorta, Ang II-high salt increased sodium-calcium exchanger-1 (NCX1) protein. The Ang II-high salt induced increase in MAP was largely prevented by central infusion of MR blockers, benzamil or losartan. Central blockades significantly lowered plasma aldosterone and endogenous ouabain and markedly decreased Ang II-high salt induced CYP11B2 mRNA expression in the adrenal cortex and NCX1 protein in the aorta.ConclusionThese results suggest that in Ang II-high salt hypertension, MR-ENaC-AT1R signalling in the brain increases circulating aldosterone and endogenous ouabain, and arterial NCX1. These factors can amplify blood pressure responses to centrally-induced sympatho-excitation and thereby contribute to severe hypertension.


2006 ◽  
Vol 291 (1) ◽  
pp. H114-H120 ◽  
Author(s):  
Matthew C. Petersen ◽  
Diane H. Munzenmaier ◽  
Andrew S. Greene

Elevated dietary salt intake has previously been demonstrated to have dramatic effects on microvascular structure and function. The purpose of this study was to determine whether a high-salt diet modulates physiological angiogenesis in skeletal muscle. Male Sprague-Dawley rats were placed on a control diet (0.4% NaCl by weight) or a high-salt diet (4.0% NaCl) before implantation of a chronic electrical stimulator. After seven consecutive days of unilateral hindlimb muscle stimulation, animals on control diets demonstrated a significant increase in microvessel density in the tibialis anterior muscle of the stimulated hindlimb relative to the contralateral control leg. High salt-fed rats demonstrated a complete inhibition of this angiogenic response, as well as a significant reduction in plasma ANG II levels compared with those of control animals. To investigate the role of ANG II suppression on the inhibitory effect of high-salt diets, a group of rats that were fed high salt were chronically infused with ANG II at a low dose. Maintenance of ANG II levels restored stimulated angiogenesis to control levels in animals fed a high-salt diet. Western blot analysis indicated that inhibition of angiogenesis in high salt-fed rats was not due to changes in VEGF or VEGF receptor type 1 protein expression in response to stimulation; however, the degree to which VEGF receptor 2 protein increased with stimulation was significantly lower in high salt-fed animals. This study demonstrates an inhibitory effect of high salt intake on stimulated angiogenesis and suggests a critical role for ANG II suppression in mediating this antiangiogenic effect.


2012 ◽  
Vol 13 (3) ◽  
pp. 353-359 ◽  
Author(s):  
MA Bayorh ◽  
A Rollins-Hairston ◽  
J Adiyiah ◽  
D Lyn ◽  
D Eatman

Introduction: The upregulation of cyclooxygenase (COX) expression by aldosterone (ALDO) or high salt diet intake is very interesting and complex in the light of what is known about the role of COX in renal function. Thus, in this study, we hypothesize that apocynin (APC) and/or eplerenone (EPL) inhibit ALDO/salt-induced kidney damage by preventing the production of prostaglandin E2 (PGE2). Methods: Dahl salt-sensitive rats on either a low-salt or high-salt diet were treated with ALDO (0.2 mg pellet) in the presence of EPL (100 mg/kg/day) or APC (1.5 mM). Indirect blood pressure, prostaglandins and ALDO levels and histological changes were measured. Results: Cyclooxygenase-2 (COX-2) levels were upregulated in the renal tubules and peritubular vessels after high-salt intake, and APC attenuated renal tubular COX-2 protein expression induced by ALDO. Plasma PGE2 levels were significantly reduced by ALDO in the rats fed a low-salt diet when compared to rats fed a high-salt diet. PGE2 was blocked by EPL but increased in the presence of APC. Conclusions: The beneficial effects of EPL may be associated with an inhibition of PGE2. The mechanism underlying the protective effects of EPL is clearly distinct from that of APC and suggests that these agents can have differential roles in cardiovascular disease.


2013 ◽  
Vol 305 (12) ◽  
pp. H1781-H1789 ◽  
Author(s):  
Gustavo R. Pedrino ◽  
Alfredo S. Calderon ◽  
Mary Ann Andrade ◽  
Sergio L. Cravo ◽  
Glenn M. Toney

Neurons of the rostral ventrolateral medulla (RVLM) are critical for generating and regulating sympathetic nerve activity (SNA). Systemic administration of ANG II combined with a high-salt diet induces hypertension that is postulated to involve elevated SNA. However, a functional role for RVLM vasomotor neurons in ANG II-salt hypertension has not been established. Here we tested the hypothesis that RVLM vasomotor neurons have exaggerated resting discharge in rats with ANG II-salt hypertension. Rats in the hypertensive (HT) group consumed a high-salt (2% NaCl) diet and received an infusion of ANG II (150 ng·kg−1·min−1 sc) for 14 days. Rats in the normotensive (NT) group consumed a normal salt (0.4% NaCl) diet and were infused with normal saline. Telemetric recordings in conscious rats revealed that mean arterial pressure (MAP) was significantly increased in HT compared with NT rats ( P < 0.001). Under anesthesia (urethane/chloralose), MAP remained elevated in HT compared with NT rats ( P < 0.01). Extracellular single unit recordings in HT ( n = 28) and NT ( n = 22) rats revealed that barosensitive RVLM neurons in both groups (HT, 23 cells; NT, 34 cells) had similar cardiac rhythmicity and resting discharge. However, a greater ( P < 0.01) increase of MAP was needed to silence discharge of neurons in HT (17 cells, 44 ± 5 mmHg) than in NT (28 cells, 29 ± 3 mmHg) rats. Maximum firing rates during arterial baroreceptor unloading were similar across groups. We conclude that heightened resting discharge of sympathoexcitatory RVLM neurons is not required for maintenance of neurogenic ANG II-salt hypertension.


2012 ◽  
Vol 302 (7) ◽  
pp. R825-R832 ◽  
Author(s):  
Bing S. Huang ◽  
Roselyn A. White ◽  
Li Bi ◽  
Frans H. H. Leenen

Central infusion of an angiotensin type 1 (AT1) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ∼25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT1 receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.


2010 ◽  
Vol 298 (6) ◽  
pp. F1465-F1471 ◽  
Author(s):  
Deyin Lu ◽  
Yiling Fu ◽  
Arnaldo Lopez-Ruiz ◽  
Rui Zhang ◽  
Ramiro Juncos ◽  
...  

Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-β is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-α, nNOS-β, and nNOS-γ were measured in the macula densa cells isolated with laser capture microdissection. Three splice variants of nNOS, α-, β-, and γ-mRNAs, were detected in the macula densa cells. After 10 days of high-salt intake, nNOS-α decreased markedly, whereas nNOS-β increased two- to threefold in the macula densa measured with real-time PCR and in the renal cortex measured with Western blot. NO production in the macula densa was measured in the perfused thick ascending limb with an intact macula densa plaque with a fluorescent dye DAF-FM. When the tubular perfusate was switched from 10 to 80 mM NaCl, a maneuver to induce TGF, NO production by the macula densa was increased by 38 ± 3% in normal-salt rats and 52 ± 6% ( P < 0.05) in the high-salt group. We found 1) macula densa cells express nNOS-α, nNOS-β, and nNOS-γ, 2) a high-salt diet enhances nNOS-β, and 3) TGF-induced NO generation from macula densa is enhanced in high-salt diet possibly from nNOS-β. In conclusion, we found that the splice variants of nNOS expressed in macula densa cells were α-, β-, and γ-isoforms and propose that enhanced level of nNOS-β during high-salt intake may contribute to macula densa NO production and help attenuate TGF.


2012 ◽  
Vol 303 (1) ◽  
pp. F130-F138 ◽  
Author(s):  
Yanjie Huang ◽  
Tatsuo Yamamoto ◽  
Taro Misaki ◽  
Hiroyuki Suzuki ◽  
Akashi Togawa ◽  
...  

Despite suppression of the circulating renin-angiotensin system (RAS), high salt intake (HSI) aggravates kidney injury in chronic kidney disease. To elucidate the effect of HSI on intrarenal RAS, we investigated the levels of intrarenal prorenin, renin, (pro)renin receptor (PRR), receptor-mediated prorenin activation, and ANG II in chronic anti-thymocyte serum (ATS) nephritic rats on HSI. Kidney fibrosis grew more severe in the nephritic rats on HSI than normal salt intake. Despite suppression of plasma renin and ANG II, marked increases in tubular prorenin and renin proteins without concomitant rises in renin mRNA, non-proteolytically activated prorenin, and ANG II were noted in the nephritic rats on HSI. Redistribution of PRR from the cytoplasm to the apical membrane, along with elevated non-proteolytically activated prorenin and ANG II, was observed in the collecting ducts and connecting tubules in the nephritic rats on HSI. Olmesartan decreased cortical prorenin, non-proteolytically activated prorenin and ANG II, and apical membranous PRR in the collecting ducts and connecting tubules, and attenuated the renal lesions. Cell surface trafficking of PRR was enhanced by ANG II and was suppressed by olmesartan in Madin-Darby canine kidney cells. These data suggest the involvement of the ANG II-dependent increase in apical membrane PRR in the augmentation of intrarenal binding of prorenin and renin, followed by nonproteolytic activation of prorenin, enhancement of renin catalytic activity, ANG II generation, and progression of kidney fibrosis in the nephritic rat kidneys on HSI. The origin of the increased tubular prorenin and renin remains to be clarified. Further studies measuring the urinary prorenin and renin are needed.


2009 ◽  
Vol 296 (4) ◽  
pp. R994-R1000 ◽  
Author(s):  
Bing S. Huang ◽  
Roselyn A. White ◽  
Arco Y. Jeng ◽  
Frans H. H. Leenen

In Dahl salt-sensitive (S) rats, high salt intake increases cerebrospinal fluid (CSF) Na+ concentration ([Na+]) and blood pressure (BP). Intracerebroventricular (ICV) infusion of a mineralocorticoid receptor (MR) blocker prevents the hypertension. To assess the role of aldosterone locally produced in the brain, we evaluated the effects of chronic central blockade with the aldosterone synthase inhibitor FAD286 and the MR blocker spironolactone on changes in aldosterone and corticosterone content in the hypothalamus and the increase in CSF [Na+] and hypertension induced by high salt intake in Dahl S rats. After 4 wk of high salt intake, plasma aldosterone and corticosterone were not changed, but hypothalamic aldosterone increased by ∼35% and corticosterone tended to increase in Dahl S rats, whereas both steroids decreased by ∼65% in Dahl salt-resistant rats. In Dahl S rats fed the high-salt diet, ICV infusion of FAD286 or spironolactone did not affect the increase in CSF [Na+]. ICV infusion of FAD286 prevented the increase in hypothalamic aldosterone and 30 mmHg of the 50-mmHg BP increase induced by high salt intake. ICV infusion of spironolactone fully prevented the salt-induced hypertension. These results suggest that, in Dahl S rats, high salt intake increases aldosterone synthesis in the hypothalamus and aldosterone acts as the main MR agonist activating central pathways contributing to salt-induced hypertension.


2015 ◽  
pp. 303-312 ◽  
Author(s):  
M. VOKURKOVÁ ◽  
H. RAUCHOVÁ ◽  
L. ŘEZÁČOVÁ ◽  
I. VANĚČKOVÁ ◽  
J. ZICHA

Enhanced production of superoxide radicals by nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase in the brain and/or kidney of salt hypertensive Dahl rats has been proposed to participate in the pathogenesis of this form of experimental hypertension. Most information was obtained in young Dahl salt-sensitive (DS) rats subjected to high salt intake prior to sexual maturation. Therefore, the aim of our study was to investigate whether salt hypertension induced in adult DS rats is also accompanied with a more pronounced oxidative stress in the brain or kidney as compared to Dahl salt-resistant (DR) controls. NADPH oxidase activity as well as the content of thiobarbituric acid-reactive substances (TBARS) and conjugated dienes (oxidative index), which indicate a degree of lipid peroxidation, were evaluated in two brain regions (containing either hypothalamic paraventricular nucleus or rostral ventrolateral medulla) as well as in renal medulla and cortex. High salt intake induced hypertension in DS rats but did not modify blood pressure in DR rats. DS and DR rats did not differ in NADPH oxidase-dependent production of ROS, TBARS content or oxidative index in either part of the brain. In addition, high-salt diet did not change significantly any of these brain parameters. In contrast, the enhanced NADPH oxidase-mediated ROS production (without significant signs of increased lipid peroxidation) was detected in the renal medulla of salt hypertensive DS rats. Our findings suggest that there are no signs of enhanced oxidative stress in the brain of adult Dahl rats with salt hypertension induced in adulthood.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meina Zou ◽  
Yanrong Chen ◽  
Zongji Zheng ◽  
Shuyue Sheng ◽  
Yijie Jia ◽  
...  

High-salt intake leads to kidney damage and even limits the effectiveness of drugs. However, it is unclear whether excessive intake of salt affects renal tubular energy metabolism and the efficacy of dapagliflozin on renal function in diabetic kidney disease (DKD). In this study, we enrolled 350 DKD patients and examined the correlation between sodium level and renal function, and analyzed influencing factors. The results demonstrated that patients with macroalbuminuria have higher 24 h urinary sodium levels. After establishment of type 2 diabetes mellitus model, the animals received a high-salt diet or normal-salt diet. In the presence of high-salt diet, the renal fibrosis was aggravated with fatty acid metabolism dysregulation. Furthermore, Na+/K+-ATPase expression was up-regulated in the renal tubules of diabetic mice, while the fatty acid metabolism was improved by inhibiting Na+/K+-ATPase of renal tubular epithelial cells. Of note, the administration with dapagliflozin improved renal fibrosis and enhanced fatty acid metabolism. But high salt weakened the above-mentioned renal protective effects of dapagliflozin in DKD. Similar results were recapitulated in vitro after incubating proximal tubular epithelial cells in high-glucose and high-salt medium. In conclusion, our results indicate that high salt can lead to fatty acid metabolism disorders by increasing Na+/K+-ATPase expression in the renal tubules of DKD. High salt intake diminishes the reno-protective effect of dapagliflozin in DKD.


Sign in / Sign up

Export Citation Format

Share Document