scholarly journals Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea

Author(s):  
Xuechao Yang ◽  
Linfei Zhang ◽  
Huan Liu ◽  
Yongfeng Shao ◽  
Shijiang Zhang
2020 ◽  
Vol 318 (1) ◽  
pp. H34-H48
Author(s):  
Alexandria B. Marciante ◽  
Lei A. Wang ◽  
Joel T. Little ◽  
J. Thomas Cunningham

Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250–300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension. NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253943
Author(s):  
Xiaojun Tang ◽  
Shisheng Li ◽  
Xinming Yang ◽  
Qinglai Tang ◽  
Ying Zhang ◽  
...  

Objective To screen for obstructive sleep apnea (OSA) biomarkers, isobaric tags for relative and absolute quantitation (iTRAQ)-labeled quantitative proteomics assay was used to identify differentially expressed proteins (DEPs) during chronic intermittent hypoxia (CIH). Method The iTRAQ technique was applied to compare DEPs in the serum of a CIH rat model and control group. Biological analysis of DEPs was performed using Gene Ontology and Kyoto Encyclopedia to explore related biological functions and signaling pathways. Enzyme-linked immunosorbent assay (ELISA) was performed to validate their expression in sera from patients with OSA and CIH rats. Results Twenty-three DEPs (fold change ≥1.2 or ≤0.833, p<0.05) were identified, and two DEPs (unique peptides>3 and higher coverage) were further verified by ELISA in the CIH rat model and OSA subject: apolipoprotein A-IV (APOA4, p<0.05) and Tubulin alpha-1A chain (TUBA1A, p<0.05). Both groups showed significant differences in the expression levels of DEPs between the CIH and control groups and the severe OSA and non-OSA groups. APOA4 was found to be upregulated and TUBA1A downregulated in both the sera from OSA patients and CIH rats, on comparing proteomics results with clinical results. There were two pathways that involved three DEPs, the mitogen-activated protein kinase (MAPK) signaling pathway (p<0.05) and cytokine-cytokine receptor interaction (p<0.05). Conclusion APOA4 and TUBA1A may be potential novel biomarkers for CIH and OSA, and may play an important role in the development of OSA complications.


2018 ◽  
Vol 124 (4) ◽  
pp. 821-830 ◽  
Author(s):  
Ling Chen ◽  
Zahra Heidari Zadi ◽  
Jin Zhang ◽  
Steven M. Scharf ◽  
Eung-Kwon Pae

Obstructive sleep apnea (OSA) is common in pregnancy and may compromise fetal and even postnatal development. We developed an animal model to determine if maternal OSA could have lasting effects in offspring. Pregnant Sprague-Dawley rats were exposed to reduced ambient O2 from 21 to 4–5%, approximately once per minute [chronic intermittent hypoxia (CIH)] for 8 h/day during gestation days 3–19. Similarly handled animals exposed to ambient air served as controls (HC). Offspring were studied for body growth and cardiovascular function for 8 postnatal weeks. Compared with HC, prenatal CIH led to growth restriction, indicated by smaller body weight and tibial length, and higher arterial blood pressure in both male and female offspring. Compared with same-sex HC, CIH males showed abdominal obesity (greater ratio of abdominal fat weight to body weight or tibial length), left ventricular (LV) hypertrophy (greater heart weight-to-tibial length ratio and LV posterior wall diastolic thickness), elevated LV contractility (increases in LV ejection fraction, end-systolic pressure-volume relations, and preload recruitable stroke work), elevated LV and arterial stiffness (increased end-diastolic pressure-volume relationship and arterial elasticity), and LV oxidative stress (greater lipid peroxide content). Compared with female CIH offspring, male CIH offspring had more profound changes in blood pressure (BP), cardiac function, myocardial lipid peroxidase (LPO) content, and abdominal adiposity. Rodent prenatal CIH exposure, mimicking human maternal OSA, exerts detrimental morphological and cardiovascular effects on developing offspring; the model may provide useful insights of OSA effects in humans. NEW & NOTEWORTHY Obstructive sleep apnea is common in human pregnancy. Following maternal exposure to chronic intermittent hypoxia, a hallmark of sleep apnea, both sexes of rat offspring showed growth retardation, with males being more vulnerable to hypertension and dysfunctional left ventricular changes. This model is useful to study detrimental effects of maternal obstructive sleep apnea on developing offspring in humans.


2001 ◽  
Vol 90 (4) ◽  
pp. 1600-1605 ◽  
Author(s):  
Eugene C. Fletcher

One of the major manifestations of obstructive sleep apnea is profound and repeated hypoxia during sleep. Acute hypoxia leads to stimulation of the peripheral chemoreceptors, which in turn increases sympathetic outflow, acutely increasing blood pressure. The chronic effect of these repeated episodic or intermittent periods of hypoxia in humans is difficult to study because chronic cardiovascular changes may take many years to manifest. Rodents have been a tremendous source of information in short- and long-term studies of hypertension and other cardiovascular diseases. Recurrent short cycles of normoxia-hypoxia, when administered to rats for 35 days, allows examination of the chronic cardiovascular response to intermittent hypoxia patterned after the episodic desaturation seen in humans with sleep apnea. The result of this type of intermittent hypoxia in rats is a 10- to 14-mmHg increase in resting (unstimulated) mean blood pressure that lasts for several weeks after cessation of the daily cyclic hypoxia. Carotid body denervation, sympathetic nerve ablation, renal sympathectomy, adrenal medullectomy, and angiotensin II receptor blockade block the blood pressure increase. It appears that adrenergic and renin-angiotensin system overactivity contributes to the early chronic elevated blood pressure in rat intermittent hypoxia and perhaps to human hypertension associated with obstructive sleep apnea.


Sign in / Sign up

Export Citation Format

Share Document