Abstract 116: Arterial Endothelial Cell Has Stronger Angiogenic Potential Compared To Venous Endothelial Cell Through Up-regulation Of Endogenous FGF2 And FGF5 Expression In 3D Microfluidic System

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression

2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2627-2636 ◽  
Author(s):  
Domenico Ribatti ◽  
Marco Presta ◽  
Angelo Vacca ◽  
Roberto Ria ◽  
Roberta Giuliani ◽  
...  

Abstract Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii49-iii49
Author(s):  
Z Wang ◽  
Y Yuan ◽  
C Xu ◽  
Y Liu

Abstract BACKGROUND Glioblastoma (GBM) has obvious blood vessels proliferation, which is one of the important histological diagnostic criteria. Bevacizumab, VEGF targeted inhibitor, is found inefficient in 2/3 cases after the clinical trial. Here, we found a specific 90kDa form of VEGF (VEGF90K) in exosomes of GBM could activate TAZ expression in endothelial cells to promote angiogenesis, which might also contribute to Bevacizumab treatment resistance. MATERIAL AND METHODS Exosomes were isolated from U87, LN229 GBM cell culture medium and characterized using transmission electron microscopy, nanoparticle analysis, and western blotting. VEGF expression in GBM and TAZ expression in human umbilical vein endothelial cells (HUVEC) are inhibited by shRNA. In vitro migration, proliferation, and tube formation assays were used to assess the angiogenic potential of HUVEC cells. Western blotting was used to analysis TAZ expression in HUVEC. Bevacizumab or exosome inhibitor GW4869 were used separately or together to evaluation their blocking effects on angiogenic functions of GBM cells. RESULTS we found a unique 90kDa form of VEGF (VEGF90K) from exosome of GBM cells could activate TAZ expression in HUVEC cells which correlated with higher levels of cellular migration, proliferation, and tube formation. Knockdown VEGF expression in GBM exosomes or TAZ expression in HUVEC cells could decrease the angiogenic function of GBM cells. GW4869 combine Bevacizumab had significantly inhibited the angiogenic ability of GBM cells in vivo and in vitro. CONCLUSION A specific exosome-associated VEGF from GBM can promote angiogenesis by activating TAZ expression in endothelial cells. Targeted inhibition of exosome secretion can significantly inhibit tumor angiogenesis and restore bevacizumab effect. Our study highlights the unique properties of VEGF in exosome which might help to explore new treatment strategies of GBM.


2009 ◽  
Vol 296 (2) ◽  
pp. L220-L228 ◽  
Author(s):  
Bing Zhu ◽  
Li Zhang ◽  
Mikhail Alexeyev ◽  
Diego F. Alvarez ◽  
Samuel J. Strada ◽  
...  

Type 5 phosphodiesterase (PDE5) inhibitors increase endothelial cell cGMP and promote angiogenesis. However, not all endothelial cell phenotypes express PDE5. Indeed, whereas conduit endothelial cells express PDE5, microvascular endothelial cells do not express this enzyme, and they are rapidly angiogenic. These findings bring into question whether PDE5 activity is a critical determinant of the endothelial cell angiogenic potential. To address this question, human full-length PDE5A1 was stably expressed in pulmonary microvascular endothelial cells. hPDE5A1 expression reduced the basal and atrial natriuretic peptide (ANP)-stimulated cGMP concentrations in these cells. hPDE5A1-expressing cells displayed attenuated network formation on Matrigel in vitro and also produced fewer blood vessels in Matrigel plug assays in vivo; the inhibitory actions of hPDE5A1 were reversed using sildenafil. To examine whether endogenous PDE5 activity suppresses endothelial cell angiogenic potential, small interfering RNA (siRNA) constructs were stably expressed in pulmonary artery endothelial cells. siRNA selectively decreased PDE5 expression and increased basal and ANP-stimulated cGMP concentrations in these conduit cells. PDE5 downregulation increased network formation on Matrigel in vitro and increased blood vessel formation in Matrigel plug assays in vivo. Collectively, our results indicate that PDE5 activity is an essential determinant of angiogenesis and suggest that PDE5 downregulation in microvascular endothelium imparts a stable, enhanced angiogenic potential to this cell type.


Author(s):  
Siddharth Shanbhag ◽  
Ahmad Rashad ◽  
Ellen Helgeland Nymark ◽  
Salwa Suliman ◽  
Catharina de Lange Davies ◽  
...  

Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Koji Ikeda ◽  
Ritsuko Nakano ◽  
Thomas Quertermous ◽  
Hiroaki Matsubara

Endothelial apoptosis is a pivotal process for angiogenesis during embryogenesis as well as postnatal. Here, we identified a novel gene, termed BLADE, that regulates endothelial apoptosis and consequently angiogenesis. BLADE was highly expressed in a variety of human cultured endothelial cells such as endothelial cells from umbilical vein (HUVEC), aorta, coronary artery and microvessels while no expression was observed in non-endothelial cells including HeLa cell, hepatoma cell and vascular smooth muscle cells. Furthermore, BLADE was expressed predominantly in blood vessels during embryogenesis, suggesting its role in angiogenesis. Amino acid sequence analysis revealed that BLADE was a novel membrane protein with no conserved domain reported before. BLADE expression was altered by treatment with VEGF, TNF-alpha and TGF-beta in HUVEC. Knockdown of BLADE in HUVEC using short interference RNA resulted in significant reduction of endothelial apoptosis. In contrast, BLADE knockdown affected neither endothelial cell migration nor proliferation. Among factors associated with apoptosis, Bcl-2 expression was drastically increased in HUVEC by BLADE-knockdown. Further analysis revealed that this increase of Bcl-2 is due to reduced ubiquitination and less subsequent degradation of Bcl-2. Inhibition of Bcl-2 completely abolished the anti-apoptotic effect of BLADE-knockdown. In vitro tube-formation of HUVEC on Matrigel was reduced concomitantly with reduced apoptosis by BLADE-knockdown at early time (12h). Nevertheless, significantly more tubes were preserved at late time (96h) by BLADE-knockdown. Moreover, in vivo angiogenesis assessed by Matrigel-plug was dramatically enhanced by BLADE-knockdown. Taken together, BLADE is a novel factor regulating endothelial apoptosis as well as angiogenesis both in vitro and in vivo. Detailed analysis of BLADE will provide new insights in the regulation of endothelial apoptosis, and in the molecular link between endothelial apoptosis and angiogenesis. Because BLADE is highly preferentially expressed in endothelial cells, inhibition of BLADE might be an ideal approach to enhance endothelial cell survival and angiogenesis without affecting the survival of other type of cells.


2021 ◽  
Vol 8 (4) ◽  
pp. 291-300
Author(s):  
Zhepeng Wang ◽  
◽  
Aiwu Lu ◽  

<abstract> <p>Cartilage tissue is avascular and resistant to tumor invasion, but the basis for these properties is still unclear. Here we report that the NH<sub>2</sub>-propeptide of type IIB procollagen (PIIBNP), a product of collagen biosynthesis, is capable of inhibiting angiogenesis both <italic>in vitro</italic> and <italic>in vivo</italic>. PIIBNP inhibits tube formation in human umbilical vein cells (HUVEC), inhibits endogenous endothelial cell outgrowth in mouse aortic ring angiogenesis bioassay and is anti-angiogenic in the mouse cornea angiogenesis assay. As α<sub>V</sub>ß<sub>3</sub> and α<sub>V</sub>ß<sub>5</sub> integrins are expressed primarily in endothelial cells, cancer cells and osteoclasts, but not in normal chondrocytes and PIIBNP binds to cell surface integrin α<sub>V</sub>ß<sub>3</sub> and αVß<sub>5</sub>, we propose that natural occurring PIIBNP protects cartilage by targeting endothelial cells during chondrogenesis, thus inhibiting angiogenesis, and rendering the tissue avascular.</p> </abstract>


2022 ◽  
Vol 8 ◽  
Author(s):  
Benrong Liu ◽  
Lihua Pang ◽  
Yang Ji ◽  
Lei Fang ◽  
Chao Wei Tian ◽  
...  

Both resveratrol and myocyte enhancer factor 2A (MEF2A) may protect vascular endothelial cell (VEC) through activating the expression of SIRT1. However, the relationship between resveratrol and MEF2A is unclear. We aimed to investigate the deeper mechanism of resveratrol in protecting vascular endothelial cells and whether MEF2A plays a key role in the protective function of resveratrol. Human umbilical vein endothelial cell (HUVEC) was used for in vitro study, and small interfere RNA was used for silencing MEF2A. Silencing MEF2A in the vascular endothelium (VE) of ApoE−/− mice was performed by tail injection with adeno associated virus expressing si-mef2a-shRNA. The results showed that treatment of HUVEC with resveratrol significantly up-regulated MEF2A, and prevented H2O2-induced but not siRNA-induced down-regulation of MEF2A. Under various experimental conditions, the expression of SIRT1 changed with the level of MEF2A. Resveratrol could rescue from cell apoptosis, reduction of cell proliferation and viability induced by H2O2, but could not prevent against that caused by silencing MEF2A with siRNA. Silencing MEF2A in VE of apoE−/− mice decreased the expression of SIRT1, increased the plasma LDL-c, and abrogated the function of resveratrol on reducing triglyceride. Impaired integrity of VE and aggravated atherosclerotic lesion were observed in MEF2A silenced mice through immunofluorescence and oil red O staining, respectively. In conclusion, resveratrol enhances MEF2A expression, and the upregulation of MEF2A is required for the endothelial protective benefits of resveratrol in vitro via activating SIRT1. Our work has also explored the in vivo relevance of this signaling pathway in experimental models of atherosclerosis and lipid dysregulation, setting the stage for more comprehensive phenotyping in vivo and further defining the molecular mechanisms.


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2627-2636 ◽  
Author(s):  
Domenico Ribatti ◽  
Marco Presta ◽  
Angelo Vacca ◽  
Roberto Ria ◽  
Roberta Giuliani ◽  
...  

Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.


2000 ◽  
Vol 192 (6) ◽  
pp. 801-812 ◽  
Author(s):  
Claudia T. Mierke ◽  
Matthias Ballmaier ◽  
Uwe Werner ◽  
Michael P. Manns ◽  
Karl Welte ◽  
...  

Mast cells (MCs) are immunoregulatory and inflammatory tissue cells preferentially located around blood vessels. Since endothelial cells have been suggested to regulate MC functions, we analyzed MC–endothelial cell interactions in vitro by performing coculture experiments with purified human intestinal MCs and human umbilical vein endothelial cells (HUVECs). We found that HUVECs provide signals allowing MCs to survive for at least 3 wk and to proliferate without addition of cytokines; otherwise all MCs died. HUVEC-dependent MC proliferation was more pronounced than that induced by stem cell factor (SCF), known to act as an MC growth factor both in vitro and in vivo. After coculture with HUVECs, most MCs were of the tryptase and chymase double-positive phenotype (MCTC). Transwell experiments suggested that the HUVECs' effects on MCs are not mediated by soluble factors. HUVEC-dependent MC adhesion and proliferation were inhibited by neutralizing antibodies directed against SCF and vascular cell adhesion molecule (VCAM)-1 expressed on HUVECs, and c-kit and very late antigen 4 (VLA-4) on MCs. The data suggest that two mechanisms (membrane-bound SCF/c-kit and VCAM-1/VLA-4) are involved in human MC–endothelial cell interactions. In conclusion, our study provides evidence that endothelial cells regulate MC survival and preferentially support human MCTC development.


Sign in / Sign up

Export Citation Format

Share Document