Abstract 235: Integration of Patient-specific Computational Hemodynamics and Vessel Wall Shear Stress Into MRI Diagnosis of Vascular Diseases

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Huidan W Yu ◽  
Xi Chen ◽  
Zhiqiang Wang ◽  
Rou Chen ◽  
Chen Lin ◽  
...  

The research objective is to expand the capability of current MRI imaging technique in assessing the overall risk and predicted outcomes of atherosclerotic diseases through the quantification of individual patient-specific hemodynamics, including flow, pressure, and wall-shear stress. A unique computational modeling technique, named InVascular, is integrated directly into clinical MRI scanners as the extension of the image reconstruction and post-processing pipeline so that velocity, pressure, vorticity, and WSS can be available immediately with other diagnostic images. InVascular is a unified and GPU accelerated computation platform to model and simulate patient-specific hemodynamics and flow-vessel interaction based on MRI imaging data. In this study, we validate the efficiency and accuracy of InVascular through quantitative hemodynamics in vertebral and carotid arteries. A group of five volunteers participated in the scanning of high resolution time-of-flight (TOF) and low resolution electrocardiogram (ECG) gated phase contrast (PC) MR angiogram (MRA) images. For each case, InVascular successively processes the images to get vessel geometry from TOF MRA and velocity slices from PC MRA and solve the fluid dynamics inside the carotid arteries with PC MRA measured velocity at the inlet and outlet (Fig. 1 a-c). The velocity profiles from Invascular and PC MRA are compared at the same location (Fig. 1 d-g ). We conclude that integration of MRAs and InVascular can well captured the velocity fields as MRI measures. InVascular can provide quantitative pressure and WSS (Fig. 1h ) information as well.

Author(s):  
Juan R. Cebral ◽  
Christopher Putman ◽  
Richard Pergolizzi ◽  
James E. Burgess

Estimation of the wall shear stress distribution in stenotic carotid arteries is important for assessing risk of stroke. Since there are no reliable experimental methods to determine wall shear stress distributions, realistic patient-specific computational fluid dynamics models are constructed from medical images. Anatomical and physiologic data are obtained from multiple image modalities including 3D rotational angiography, contrast-enhanced magnetic resonance angiography, carotid duplex ultrasound and phase-contrast magnetic resonance. These images are used to construct patient-specific finite element grids and to solve the incompressible Navier-Stokes equations under physiological pulsatile flow conditions. The detailed knowledge of the carotid hemodynamics derived from these models can be used to enhance our understanding of the relationship between flow patterns and symptoms, and ultimately risk of stroke. This methodology can also be used to correllate flow patterns with the outcome of endovascular procedures such as angioplasty and stenting.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikołaj Zimny ◽  
Edyta Kawlewska ◽  
Anna Hebda ◽  
Wojciech Wolański ◽  
Piotr Ładziński ◽  
...  

Abstract Background Previously published computational fluid dynamics (CFD) studies regarding intracranial aneurysm (IA) formation present conflicting results. Our study analysed the involvement of the combination of high wall shear stress (WSS) and a positive WSS gradient (WSSG) in IA formation. Methods We designed a case-control study with a selection of 38 patients with an unruptured middle cerebral artery (MCA) aneurysm and 39 non-aneurysmal controls to determine the involvement of WSS, oscillatory shear index (OSI), the WSSG and its absolute value (absWSSG) in aneurysm formation based on patient-specific CFD simulations using velocity profiles obtained from transcranial colour-coded sonography. Results Among the analysed parameters, only the WSSG had significantly higher values compared to the controls (11.05 vs − 14.76 [Pa/mm], P = 0.020). The WSS, absWSSG and OSI values were not significantly different between the analysed groups. Logistic regression analysis identified WSS and WSSG as significant co-predictors for MCA aneurysm formation, but only the WSSG turned out to be a significant independent prognosticator (OR: 1.009; 95% CI: 1.001–1.017; P = 0.025). Significantly more patients (23/38) in the case group had haemodynamic regions of high WSS combined with a positive WSSG near the bifurcation apex, while in the control group, high WSS was usually accompanied by a negative WSSG (14/39). From the analysis of the ROC curve for WSSG, the area under the curve (AUC) was 0.654, with the optimal cut-off value −0.37 Pa/mm. The largest AUC was recognised for combined WSS and WSSG (AUC = 0.671). Our data confirmed that aneurysms tend to form near the bifurcation apices in regions of high WSS values accompanied by positive WSSG. Conclusions The development of IAs is determined by an independent effect of haemodynamic factors. High WSS impacts MCA aneurysm formation, while a positive WSSG mainly promotes this process.


2019 ◽  
Vol 11 (10) ◽  
pp. 999-1003 ◽  
Author(s):  
Michael R Levitt ◽  
Christian Mandrycky ◽  
Ashley Abel ◽  
Cory M Kelly ◽  
Samuel Levy ◽  
...  

ObjectivesTo study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm.Materials and methodsA 3D-printed model of a cerebral aneurysm was created from a patient’s angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations.ResultsThe model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations.ConclusionsCreating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Wang ◽  
Junwei Wang ◽  
Jing Peng ◽  
Mingming Huo ◽  
Zhiqiang Yang ◽  
...  

Patients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support. Specifically, blood velocity, wall shear stress, and pressure difference are altered within the aorta. In this study, computational fluid dynamics (CFD) was used to elucidate the effects of a short-term LVAD for hemodynamic performance in a patient-specific aorta model. The three-dimensional (3D) geometric models of a patient-specific aorta and a short-term LVAD, Impella CP, were created. Velocity, wall shear stress, and pressure difference in the patient-specific aorta model with the Impella CP assistance were calculated and compared with the baseline values of the aorta without Impella CP support. Impella CP support augmented cardiac output, blood velocity, wall shear stress, and pressure difference in the aorta. The proposed CFD study could analyze the quantitative changes in the important hemodynamic parameters while considering the effects of Impella CP, and provide a scientific basis for further predicting and assessing the effects of these hemodynamic signals on the aorta.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217271 ◽  
Author(s):  
A. M. Moerman ◽  
K. Dilba ◽  
S. Korteland ◽  
D. H. J. Poot ◽  
S. Klein ◽  
...  

2015 ◽  
Vol 8 (8) ◽  
pp. 808-812 ◽  
Author(s):  
Ying Zhang ◽  
Linkai Jing ◽  
Jian Liu ◽  
Chuanhui Li ◽  
Jixing Fan ◽  
...  

ObjectiveTo identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status.Methods173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis.ResultsTwo clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038).ConclusionsWe combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Matthew D. Ford ◽  
Ugo Piomelli

Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120 Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.


Author(s):  
Kevin R. Johnson ◽  
John N. Oshinski

Low and oscillatory arterial wall shear stress (WSS) have been shown to have an effect on many factors implicated in atherosclerotic lesion development. The majority of studies on the relationship between low or oscillating WSS and sites of intimal thickening and early atherosclerotic lesion development are based on in-vitro model studies of flow and WSS distribution. These models are based on average vessel geometries with average flow conditions and compared to average pathology distribution of lesions that may obscure the true relationship between WSS and lesion distribution[1]. Recent techniques have been developed using coronary MR angiography to create patient-specific 3D models along with velocity measurements of blood flow using phase contrast magnetic resonance (PCMR). However, these models may lack adequate spatial resolution for accurate, localized calculation of WSS[2]. Current, state-of-art multidetector CT scanners offer improvements in spatial resolution over MRI for creation of 3D vessel models.


Sign in / Sign up

Export Citation Format

Share Document