Abstract 105: Novel Functions For Synaptosomal-associated Protein 29 (snap29) In Cardiac Arrhythmias

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Jie Wang ◽  
Jason Pellman ◽  
Robert Lyon ◽  
Yan Liang ◽  
Valeria Mezzano ◽  
...  

Human genetic studies and mouse models have classically linked mutations/deficiencies in components of the desmosomal cell-cell junction to arrhythmogenic right ventricular cardiomyopathy (ARVC). However, growing evidence points to the importance of the desmosome in cardiac diseases beyond ARVC, which include electrical diseases that have no impact on cardiac structure/morphology. The mechanisms of how defects in cardiac desmosomal protein homeostasis drive these distinct forms of cardiac disease remain elusive to the field. To uncover mechanisms that underlie the distinct pathophysiology (structural versus non-structural) encompassed by desmosomal mutations/loss, we performed an unbiased yeast-two-hybrid screen using an adult human heart cDNA library and the desmosomal protein, desmoplakin (DSP) to uncover new regulators of cardiac desmosomal protein homeostasis. We identified synaptosomal-associated protein 29 (SNAP29), as a novel DSP-interacting protein in the adult human heart. Traditional functions of SNAP29 are to regulate membrane fusion and play a role in autophagy; however, its role at the desmosome and in the heart is undefined. We show that SNAP29 is a subcomponent of the cardiac desmosome, as it co-localizes with DSP in the adult heart and DSP-deficient hearts harbor loss of SNAP29. Cardiomyocyte-specific SNAP29 knockout (SNAP29-cKO) mice displayed baseline and pacing-induced ventricular arrhythmias in an age-dependent manner in the absence of cardiac structural and functional deficits. We show that a loss of a subset of desmosomal proteins and connexin43 as well as upregulation of selective autophagy-mediated degradation underlie SNAP29 deficient cardiomyocyte arrhythmias. In line with this, acute blockade of autophagy was sufficient to rescue desmosomal and connexin43 protein levels as well as arrhythmias in SNAP29 deficient cardiomyocytes. In conclusion, SNAP29 insulates a subset of desmosomal and gap junction proteins from selective autophagy-mediated degradation to restrict cardiac arrhythmias. Thus, loss of SNAP29-desmosome-gap junction interactome may predispose the heart to desmosomal based diseases of an electrical nature.

1997 ◽  
Vol 36 (04/05) ◽  
pp. 290-293
Author(s):  
L. Glass ◽  
T. Nomura

Abstract:Excitable media, such as nerve, heart and the Belousov-Zhabo- tinsky reaction, exhibit a large excursion from equilibrium in response to a small but finite perturbation. Assuming a one-dimensional ring geometry of sufficient length, excitable media support a periodic wave of circulation. As in the periodic stimulation of oscillations in ordinary differential equations, the effects of periodic stimuli of the periodically circulating wave can be described by a one-dimensional Poincaré map. Depending on the period and intensity of the stimulus as well as its initial phase, either entrainment or termination of the original circulating wave is observed. These phenomena are directly related to clinical observations concerning periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave propagation in the human heart.


2000 ◽  
Vol 32 (11) ◽  
pp. 1931-1938 ◽  
Author(s):  
Stefania Bortoluzzi ◽  
Fabio d»Alessi ◽  
Gian Antonio Danieli

Stem Cells ◽  
2008 ◽  
Vol 26 (7) ◽  
pp. 1723-1731 ◽  
Author(s):  
Clotilde Castaldo ◽  
Franca Di Meglio ◽  
Daria Nurzynska ◽  
Gianpaolo Romano ◽  
Ciro Maiello ◽  
...  
Keyword(s):  

2003 ◽  
pp. 135-144 ◽  
Author(s):  
Sawa Kostin ◽  
Markus Rieger ◽  
Sebastian Dammer ◽  
Stefan Hein ◽  
Manfred Richter ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Joseph Burclaff ◽  
R. Jarrett Bliton ◽  
Keith A Breau ◽  
Meryem T Ok ◽  
Ismael Gomez-Martinez ◽  
...  

Background and Aims: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies in healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics from 3 humans covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon. Methods: 12,590 single epithelial cells from three independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and capacity for response to extrinsic signals along the gut axis across different humans. Results: Cells were assigned to 25 epithelial lineage clusters. Human intestinal stem cells (ISCs) are not specifically marked by many murine ISC markers. Lysozyme expression is not unique to Paneth cells (PCs), and PCs lack expression of expected niche-factors. BEST4 cells express NPY and show functional and maturational differences between SI and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell-junction, and nutrient absorption genes show unappreciated regional expression differences across lineages. Differential expression of receptors and drug targets across lineages reveals biological variation and potential for variegated responses. Conclusions: Our study identifies novel lineage marker genes; covers regional differences; shows important differences between mouse and human gut epithelium; and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves data gaps in anatomical regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.


2021 ◽  
Author(s):  
Anita Kumar ◽  
Joslyn Mills ◽  
Wesley Parker ◽  
Joshua Leitão ◽  
Celeste Ng ◽  
...  

Abstract The ability of organisms to live long depends largely on the maintenance of proteome stability via proteostatic mechanisms including translational regulation, protein chaperoning and degradation machineries. In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but the role of lipid droplets in longevity has remained obscure. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we unexpectedly uncovered a novel role for lipid droplets in proteostasis and longevity. Using an unbiased genomewide RNAi screening approach, we identified several SQST-1 modulators, including proteins found on lipid droplets and those prone to aggregate with age. SQST-1 accumulated on lipid droplets when autophagy was inhibited, suggesting that lipid droplets may serve a role in facilitating selective autophagy. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan in an HSF-1/HSF1-dependent and CDC-48/VCP-dependent manner. Silencing atgl-1 mitigated the age-related accumulation of SQST-1 and reduced overall ubiquitination of proteins. Reducing atgl-1 also improved proteostasis in a nematode model of Alzheimer’s disease. Subcellular analyses revealed that lipid droplets unexpectedly harbor more ubiquitinated proteins than the cytosol. Accordingly, low lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised. Altogether, our study uncovers a key role for lipid droplets in C. elegans as a proteostatic mediator that reduces protein ubiquitination, facilitates autophagy, and promotes longevity.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1472 ◽  
Author(s):  
Anna L. Höving ◽  
Kazuko E. Schmidt ◽  
Madlen Merten ◽  
Jassin Hamidi ◽  
Ann-Katrin Rott ◽  
...  

During aging, senescent cells accumulate in various tissues accompanied by decreased regenerative capacities of quiescent stem cells, resulting in deteriorated organ function and overall degeneration. In this regard, the adult human heart with a generally low regenerative potential is of extreme interest as a target for rejuvenating strategies with blood borne factors that might be able to activate endogenous stem cell populations. Here, we investigated for the first time the effects of human blood plasma and serum on adult human cardiac stem cells (hCSCs) and showed significantly increased proliferation capacities and metabolism accompanied by a significant decrease of senescent cells, demonstrating a beneficial serum-mediated effect that seemed to be independent of age and sex. However, RNA-seq analysis of serum-treated hCSCs revealed profound effects on gene expression depending on the age and sex of the plasma donor. We further successfully identified key pathways that are affected by serum treatment with p38-MAPK playing a regulatory role in protection from senescence and in the promotion of proliferation in a serum-dependent manner. Inhibition of p38-MAPK resulted in a decline of these serum-mediated beneficial effects on hCSCs in terms of decreased proliferation and accelerated senescence. In summary, we provide new insights in the regulatory networks behind serum-mediated protective effects on adult human cardiac stem cells.


EP Europace ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 320-329
Author(s):  
Alexia Vite ◽  
Estelle Gandjbakhch ◽  
Tiphaine Hery ◽  
Veronique Fressart ◽  
Francoise Gary ◽  
...  

Abstract Aims Desmoglein-2 (DSG2) mutations, which encode a heart-specific cadherin crucial for desmosomal adhesion, are frequent in arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). DSG2 mutations have been associated with higher risk of biventricular involvement. Among DSG2 mutations, mutations of the inhibitory propeptide consensus cleavage-site (Arg-X-Arg/Lys-Arg), are particularly frequent. In the present work, we explored the functional consequences of DSG2 propeptide cleavage site mutations p.Arg49His, p.Arg46Trp, and p.Arg46Gln on localization, adhesive properties, and desmosome incorporation of DSG2. Methods and results We studied the expression of mutant-DSG2 in human heart and in epithelial and cardiac cellular models expressing wild-type or mutant (p.Arg49His, p.Arg46Trp, and p.Arg46Gln) proDSG2-GFP fusion proteins. The consequences of the p.Arg46Trp mutation on DSG2 adhesiveness were studied by surface plasmon resonance. Incorporation of mutant p.Arg46Trp DSG2 into desmosomes was studied under low-calcium culture conditions and cyclic mechanical stress. We demonstrated in human heart and cellular models that all three mutations prevented N-terminal propeptide cleavage, but did not modify intercellular junction targeting. Surface plasmon resonance experiments showed a propeptide-dependent loss of interaction between the cadherin N-terminal extracellular 1 (EC1) domains. Additionally, proDSG2 mutant proteins were abnormally incorporated into desmosomes under low-calcium culture conditions or following mechanical stress. This was accompanied by an epidermal growth factor receptor-dependent internalization of proDSG2, suggesting increased turnover of unprocessed proDSG2. Conclusion Our results strongly suggest weakened desmosomal adhesiveness due to abnormal incorporation of uncleaved mutant proDSG2 in cellular stress conditions. These results provide new insights into desmosomal cadherin regulation and ARVC/D pathophysiology, in particular, the potential role of mechanical stress on desmosomal dysfunction.


1869 ◽  
Vol 6 ◽  
pp. 499-501
Author(s):  
P. D. Handyside

In this paper the author described in the adult human heart certain vestiges of structures which, during fœtal life, exist in an entire and perfect state. At birth, however, these, ceasing to be of use, generally disappear.In allusion, first, to the Eustachian valve, he exhibited (and illustrated by the annexed sketch, fig. 1), an apparently unique specimen—obtained in his dissecting-rooms about six years ago—namely, a very large and reticulated Eustachian valve, prolonged at its middle third in the form of a semi-insulated cribriform fibrous lamina, taking a crescentic form continuously throughout, and after a valvular manner ending at the distance of three-sixteenths of an inch from the crest or rim of entrance of the superior vena cava.


Sign in / Sign up

Export Citation Format

Share Document