Neural Coding: Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies

2000 ◽  
Vol 12 (11) ◽  
pp. 2621-2653 ◽  
Author(s):  
Laura Martignon ◽  
Gustavo Deco ◽  
Kathryn Laskey ◽  
Mathew Diamond ◽  
Winrich Freiwald ◽  
...  

Recent advances in the technology of multiunit recordings make it possible to test Hebb's hypothesis that neurons do not function in isolation but are organized in assemblies. This has created the need for statistical approaches to detecting the presence of spatiotemporal patterns of more than two neurons in neuron spike train data. We mention three possible measures for the presence of higher-order patterns of neural activation—coefficients of log-linear models, connected cumulants, and redundancies—and present arguments in favor of the coefficients of log-linear models. We present test statistics for detecting the presence of higher-order interactions in spike train data by parameterizing these interactions in terms of coefficients of log-linear models. We also present a Bayesian approach for inferring the existence or absence of interactions and estimating their strength. The two methods, the frequentist and the Bayesian one, are shown to be consistent in the sense that interactions that are detected by either method also tend to be detected by the other. A heuristic for the analysis of temporal patterns is also proposed. Finally, a Bayesian test is presented that establishes stochastic differences between recorded segments of data. The methods are applied to experimental data and synthetic data drawn from our statistical models. Our experimental data are drawn from multiunit recordings in the prefrontal cortex of behaving monkeys, the somatosensory cortex of anesthetized rats, and multiunit recordings in the visual cortex of behaving monkeys.

1998 ◽  
Vol 53 (7-8) ◽  
pp. 657-669 ◽  
Author(s):  
Iris Haalman ◽  
Eilon Vaadia

Abstract Neuronal Activity, Emergence of Spatio-Temporal Patterns This paper explores if dynamic modulation of coherent firing serves cortical functions. We recorded neuronal activity in the frontal cortex of behaving monkeys and found that tempo­ ral coincidences of spikes firing of different neurons can emerge within a fraction of a second in relation to the animal behavior. The temporal patterns of the correlation could not be predicted from the modulations of the neurons firing rate and finally, the patterns of correla­ tion depend on the distance between neurons. These findings call for a revision of prevailing models of neural coding that solely rely on firing rates. The findings suggest that modification of neuronal interactions can serve as a mechanism by which neurons associate rapidly into a functional group in order to perform a specific computational task. Increased correlation between members of the groups, and decreased or negative correlation with others, enhance the ability to dissociate one group from concurrently activated competing groups. Such modu­ lation of neuronal interactions allows each neuron to become a member of several different groups and participate in different computational tasks.


2018 ◽  
Vol 30 (1) ◽  
pp. 125-148 ◽  
Author(s):  
Jacob Østergaard ◽  
Mark A. Kramer ◽  
Uri T. Eden

To understand neural activity, two broad categories of models exist: statistical and dynamical. While statistical models possess rigorous methods for parameter estimation and goodness-of-fit assessment, dynamical models provide mechanistic insight. In general, these two categories of models are separately applied; understanding the relationships between these modeling approaches remains an area of active research. In this letter, we examine this relationship using simulation. To do so, we first generate spike train data from a well-known dynamical model, the Izhikevich neuron, with a noisy input current. We then fit these spike train data with a statistical model (a generalized linear model, GLM, with multiplicative influences of past spiking). For different levels of noise, we show how the GLM captures both the deterministic features of the Izhikevich neuron and the variability driven by the noise. We conclude that the GLM captures essential features of the simulated spike trains, but for near-deterministic spike trains, goodness-of-fit analyses reveal that the model does not fit very well in a statistical sense; the essential random part of the GLM is not captured.


2012 ◽  
Vol 24 (8) ◽  
pp. 2007-2032 ◽  
Author(s):  
Ryan C. Kelly ◽  
Robert E. Kass

Several authors have previously discussed the use of log-linear models, often called maximum entropy models, for analyzing spike train data to detect synchrony. The usual log-linear modeling techniques, however, do not allow time-varying firing rates that typically appear in stimulus-driven (or action-driven) neurons, nor do they incorporate non-Poisson history effects or covariate effects. We generalize the usual approach, combining point-process regression models of individual neuron activity with log-linear models of multiway synchronous interaction. The methods are illustrated with results found in spike trains recorded simultaneously from primary visual cortex. We then assess the amount of data needed to reliably detect multiway spiking.


2020 ◽  
Vol 32 (5) ◽  
pp. 887-911
Author(s):  
Manuel Ciba ◽  
Robert Bestel ◽  
Christoph Nick ◽  
Guilherme Ferraz de Arruda ◽  
Thomas Peron ◽  
...  

As synchronized activity is associated with basic brain functions and pathological states, spike train synchrony has become an important measure to analyze experimental neuronal data. Many measures of spike train synchrony have been proposed, but there is no gold standard allowing for comparison of results from different experiments. This work aims to provide guidance on which synchrony measure is best suited to quantify the effect of epileptiform-inducing substances (e.g., bicuculline, BIC) in in vitro neuronal spike train data. Spike train data from recordings are likely to suffer from erroneous spike detection, such as missed spikes (false negative) or noise (false positive). Therefore, different timescale-dependent (cross-correlation, mutual information, spike time tiling coefficient) and timescale-independent (Spike-contrast, phase synchronization (PS), A-SPIKE-synchronization, A-ISI-distance, ARI-SPIKE-distance) synchrony measures were compared in terms of their robustness to erroneous spike trains. For this purpose, erroneous spike trains were generated by randomly adding (false positive) or deleting (false negative) spikes (in silico manipulated data) from experimental data. In addition, experimental data were analyzed using different spike detection threshold factors in order to confirm the robustness of the synchrony measures. All experimental data were recorded from cortical neuronal networks on microelectrode array chips, which show epileptiform activity induced by the substance BIC. As a result of the in silico manipulated data, Spike-contrast was the only measure that was robust to false-negative as well as false-positive spikes. Analyzing the experimental data set revealed that all measures were able to capture the effect of BIC in a statistically significant way, with Spike-contrast showing the highest statistical significance even at low spike detection thresholds. In summary, we suggest using Spike-contrast to complement established synchrony measures because it is timescale independent and robust to erroneous spike trains.


2020 ◽  
Author(s):  
Sahand Farhoodi ◽  
Uri Eden

Generalized Linear Models (GLMs) have been used extensively in statistical models of spike train data. However, the IRLS algorithm, which is often used to fit such models, can fail to converge in situations where response and non-response can be separated by a single predictor or a linear combination of multiple predictors. Such situations are likely to arise in many neural systems due to properties such as refractoriness and incomplete sampling of the signals that influence spiking. In this paper, we describe multiple classes of approaches to address this problem: Standard IRLS with a fixed iteration limit, computing the maximum likelihood solution in the limit, Bayesian estimation, regularization, change of basis, and modifying the search parameters. We demonstrate a specific application of each of these methods to spiking data from rat somatosensory cortex and discuss the advantages and disadvantages of each. We also provide an example of a roadmap for selecting a method based on the problem’s particular analysis issues and scientific goals.


2012 ◽  
Vol 24 (12) ◽  
pp. 3213-3245 ◽  
Author(s):  
Yimin Nie ◽  
Masami Tatsuno

The brain processes information in a highly parallel manner. Determination of the relationship between neural spikes and synaptic connections plays a key role in the analysis of electrophysiological data. Information geometry (IG) has been proposed as a powerful analysis tool for multiple spike data, providing useful insights into the statistical interactions within a population of neurons. Previous work has demonstrated that IG measures can be used to infer the connection weight between two neurons in a neural network. This property is useful in neuroscience because it provides a way to estimate learning-induced changes in synaptic strengths from extracellular neuronal recordings. A previous study has shown, however, that this property would hold only when inputs to neurons are not correlated. Since neurons in the brain often receive common inputs, this would hinder the application of the IG method to real data. We investigated the two-neuron-IG measures in higher-order log-linear models to overcome this limitation. First, we mathematically showed that the estimation of uniformly connected synaptic weight can be improved by taking into account higher-order log-linear models. Second, we numerically showed that the estimation can be improved for more general asymmetrically connected networks. Considering the estimated number of the synaptic connections in the brain, we showed that the two-neuron IG measure calculated by the fourth- or fifth-order log-linear model would provide an accurate estimation of connection strength within approximately a 10% error. These studies suggest that the two-neuron IG measure with higher-order log-linear expansion is a robust estimator of connection weight even under correlated inputs, providing a useful analytical tool for real multineuronal spike data.


2015 ◽  
Author(s):  
Jacob Andreas ◽  
Dan Klein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document