Genetic Regulatory Network Models of Biological Clocks: Evolutionary History Matters

2008 ◽  
Vol 14 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Johannes F. Knabe ◽  
Chrystopher L. Nehaniv ◽  
Maria J. Schilstra

We study the evolvability and dynamics of artificial genetic regulatory networks (GRNs), as active control systems, realizing simple models of biological clocks that have evolved to respond to periodic environmental stimuli of various kinds with appropriate periodic behaviors. GRN models may differ in the evolvability of expressive regulatory dynamics. A new class of artificial GRNs with an evolvable number of complex cis-regulatory control sites—each involving a finite number of inhibitory and activatory binding factors—is introduced, allowing realization of complex regulatory logic. Previous work on biological clocks in nature has noted the capacity of clocks to oscillate in the absence of environmental stimuli, putting forth several candidate explanations for their observed behavior, related to anticipation of environmental conditions, compartmentation of activities in time, and robustness to perturbations of various kinds or to unselected accidents of neutral selection. Several of these hypotheses are explored by evolving GRNs with and without (Gaussian) noise and blackout periods for environmental stimulation. Robustness to certain types of perturbation appears to account for some, but not all, dynamical properties of the evolved networks. Unselected abilities, also observed for biological clocks, include the capacity to adapt to change in wavelength of environmental stimulus and to clock resetting.

2020 ◽  
Author(s):  
Silke D. Kühlwein ◽  
Nensi Ikonomi ◽  
Julian D. Schwab ◽  
Johann M. Kraus ◽  
K. Lenhard Rudolph ◽  
...  

AbstractBiological processes are rarely a consequence of single protein interactions but rather of complex regulatory networks. However, interaction graphs cannot adequately capture temporal changes. Among models that investigate dynamics, Boolean network models can approximate simple features of interaction graphs integrating also dynamics. Nevertheless, dynamic analyses are time-consuming and with growing number of nodes may become infeasible. Therefore, we set up a method to identify minimal sets of nodes able to determine network dynamics. This approach is able to depict dynamics without calculating exhaustively the complete network dynamics. Applying it to a variety of biological networks, we identified small sets of nodes sufficient to determine the dynamic behavior of the whole system. Further characterization of these sets showed that the majority of dynamic decision-makers were not static hubs. Our work suggests a paradigm shift unraveling a new class of nodes different from static hubs and able to determine network dynamics.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Le Shu ◽  
Yuqi Zhao ◽  
Aldons J Lusis ◽  
Ke Hao ◽  
Thomas Quertermous ◽  
...  

Insulin resistance (IR) is a critical pathogenic factor for highly prevalent modern cardiometabolic diseases, including coronary artery disease (CAD) and type 2 diabetes (T2D). However, the molecular circuitries underlying IR remain to be elucidated. The GENEticS of Insulin Sensitivity Consortium (GENESIS) conducted genome-wide association studies (GWAS) for direct measures of IR using euglycemic clamp or insulin suppression test. We sought to identify gene networks and their key intervening drivers for IR by performing a comprehensive integrative analysis leveraging GWAS data from seven GENESIS cohorts representing three ethnic groups - Europeans, Asians and Hispanics, along with expression quantitative trait loci, ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from IR relevant tissues. Integration of the multi-ethnic GWAS with diverse functional genomics information captured shared IR pathways and networks across ethnicities that are independent of body mass index, including GLUT4 translocation regulation, insulin signaling, MAPK signaling, interleukin signaling, extracellular matrix, branched-chain amino acids metabolisms, cell cycle, and oxidative phosphorylation. Further integration of these GWAS-informed IR processes with graphical gene networks uncovered potential key regulators including HADH, COX5A, VCAN and TOP2A , whose network neighbors are consistently enriched for the genetic association signals of IR across ethnicities, and show significant correlation with IR, fasting glucose and insulin levels in the transcriptomic-wide association data from a Hybrid Mouse Diversity Panel comprised of >100 strains fed with high-fat diet. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide new understanding of the pathways, gene networks and potential regulators contributing to IR. These results will also facilitate future functional investigations to unveil how DNA variations translate into IR.


Author(s):  
Christian Darabos ◽  
Mario Giacobini ◽  
Marco Tomassini

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a highly simplified model of genetic regulatory networks. This extremely simple and abstract model has been studied in detail and has been shown capable of extremely interesting dynamical behavior. First of all, as some parameters are varied such as the network’s connectivity, or the probability of expressing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those attractors that are short and stable under perturbations will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these models may be useful for understanding real-life cell regulatory networks, is still valid, provided that the model is updated to take into account present knowledge about the topology of real gene regulatory networks, and the timing of events, without loosing its attractive simplicity. According to present data, many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free type. From the point of view of the timing of events, standard RBN update their state synchronously. This assumption is open to discussion when dealing with biologically plausible networks. In particular, for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different parts of the network at different times, according to a strict sequence, which depends on the particular network under study. The expression of a gene depends on several transcription factors, the synthesis of which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed a new, more biologically plausible model. It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics that better captures the presence of an activation sequence of genes linked to the topological properties of the network. By simulating statistical ensembles of networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical biological network models. Moreover, the model demonstrates interesting scaling abilities as the size of the networks is increased.


Sign in / Sign up

Export Citation Format

Share Document