scholarly journals Dynamic characteristics rather than static hubs are important in biological networks

2020 ◽  
Author(s):  
Silke D. Kühlwein ◽  
Nensi Ikonomi ◽  
Julian D. Schwab ◽  
Johann M. Kraus ◽  
K. Lenhard Rudolph ◽  
...  

AbstractBiological processes are rarely a consequence of single protein interactions but rather of complex regulatory networks. However, interaction graphs cannot adequately capture temporal changes. Among models that investigate dynamics, Boolean network models can approximate simple features of interaction graphs integrating also dynamics. Nevertheless, dynamic analyses are time-consuming and with growing number of nodes may become infeasible. Therefore, we set up a method to identify minimal sets of nodes able to determine network dynamics. This approach is able to depict dynamics without calculating exhaustively the complete network dynamics. Applying it to a variety of biological networks, we identified small sets of nodes sufficient to determine the dynamic behavior of the whole system. Further characterization of these sets showed that the majority of dynamic decision-makers were not static hubs. Our work suggests a paradigm shift unraveling a new class of nodes different from static hubs and able to determine network dynamics.

2019 ◽  
Vol 19 (6) ◽  
pp. 413-425 ◽  
Author(s):  
Athanasios Alexiou ◽  
Stylianos Chatzichronis ◽  
Asma Perveen ◽  
Abdul Hafeez ◽  
Ghulam Md. Ashraf

Background:Latest studies reveal the importance of Protein-Protein interactions on physiologic functions and biological structures. Several stochastic and algorithmic methods have been published until now, for the modeling of the complex nature of the biological systems.Objective:Biological Networks computational modeling is still a challenging task. The formulation of the complex cellular interactions is a research field of great interest. In this review paper, several computational methods for the modeling of GRN and PPI are presented analytically.Methods:Several well-known GRN and PPI models are presented and discussed in this review study such as: Graphs representation, Boolean Networks, Generalized Logical Networks, Bayesian Networks, Relevance Networks, Graphical Gaussian models, Weight Matrices, Reverse Engineering Approach, Evolutionary Algorithms, Forward Modeling Approach, Deterministic models, Static models, Hybrid models, Stochastic models, Petri Nets, BioAmbients calculus and Differential Equations.Results:GRN and PPI methods have been already applied in various clinical processes with potential positive results, establishing promising diagnostic tools.Conclusion:In literature many stochastic algorithms are focused in the simulation, analysis and visualization of the various biological networks and their dynamics interactions, which are referred and described in depth in this review paper.


Author(s):  
Pablo Minguez ◽  
Joaquin Dopazo

Here the authors review the state of the art in the use of protein-protein interactions (ppis) within the context of the interpretation of genomic experiments. They report the available resources and methodologies used to create a curated compilation of ppis introducing a novel approach to filter interactions. Special attention is paid in the complexity of the topology of the networks formed by proteins (nodes) and pairwise interactions (edges). These networks can be studied using graph theory and a brief introduction to the characterization of biological networks and definitions of the more used network parameters is also given. Also a report on the available resources to perform different modes of functional profiling using ppi data is provided along with a discussion on the approaches that have typically been applied into this context. They also introduce a novel methodology for the evaluation of networks and some examples of its application.


2019 ◽  
Author(s):  
Xueming Liu ◽  
Enrico Maiorino ◽  
Arda Halu ◽  
Joseph Loscalzo ◽  
Jianxi Gao ◽  
...  

AbstractRobustness is a prominent feature of most biological systems. In a cell, the structure of the interactions between genes, proteins, and metabolites has a crucial role in maintaining the cell’s functionality and viability in presence of external perturbations and noise. Despite advances in characterizing the robustness of biological systems, most of the current efforts have been focused on studying homogeneous molecular networks in isolation, such as protein-protein or gene regulatory networks, neglecting the interactions among different molecular substrates. Here we propose a comprehensive framework for understanding how the interactions between genes, proteins and metabolites contribute to the determinants of robustness in a heterogeneous biological network. We integrate heterogeneous sources of data to construct a multilayer interaction network composed of a gene regulatory layer, and protein-protein interaction layer and a metabolic layer. We design a simulated perturbation process to characterize the contribution of each gene to the overall system’s robustness, defined as its influence over the global network. We find that highly influential genes are enriched in essential and cancer genes, confirming the central role of these genes in critical cellular processes. Further, we determine that the metabolic layer is more vulnerable to perturbations involving genes associated to metabolic diseases. By comparing the robustness of the network to multiple randomized network models, we find that the real network is comparably or more robust than expected in the random realizations. Finally, we analytically derive the expected robustness of multilayer biological networks starting from the degree distributions within or between layers. These results provide new insights into the non-trivial dynamics occurring in the cell after a genetic perturbation is applied, confirming the importance of including the coupling between different layers of interaction in models of complex biological systems.


2021 ◽  
Author(s):  
Brennan Klein ◽  
Erik Hoel ◽  
Anshuman Swain ◽  
Ross Griebenow ◽  
Michael Levin

Abstract The internal workings of biological systems are notoriously difficult to understand. Due to the prevalence of noise and degeneracy in evolved systems, in many cases the workings of everything from gene regulatory networks to protein–protein interactome networks remain black boxes. One consequence of this black-box nature is that it is unclear at which scale to analyze biological systems to best understand their function. We analyzed the protein interactomes of over 1800 species, containing in total 8 782 166 protein–protein interactions, at different scales. We show the emergence of higher order ‘macroscales’ in these interactomes and that these biological macroscales are associated with lower noise and degeneracy and therefore lower uncertainty. Moreover, the nodes in the interactomes that make up the macroscale are more resilient compared with nodes that do not participate in the macroscale. These effects are more pronounced in interactomes of eukaryota, as compared with prokaryota; these results hold even after sensitivity tests where we recalculate the emergent macroscales under network simulations where we add different edge weights to the interactomes. This points to plausible evolutionary adaptation for macroscales: biological networks evolve informative macroscales to gain benefits of both being uncertain at lower scales to boost their resilience, and also being ‘certain’ at higher scales to increase their effectiveness at information transmission. Our work explains some of the difficulty in understanding the workings of biological networks, since they are often most informative at a hidden higher scale, and demonstrates the tools to make these informative higher scales explicit.


Author(s):  
Christian Darabos ◽  
Mario Giacobini ◽  
Marco Tomassini

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a highly simplified model of genetic regulatory networks. This extremely simple and abstract model has been studied in detail and has been shown capable of extremely interesting dynamical behavior. First of all, as some parameters are varied such as the network’s connectivity, or the probability of expressing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those attractors that are short and stable under perturbations will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these models may be useful for understanding real-life cell regulatory networks, is still valid, provided that the model is updated to take into account present knowledge about the topology of real gene regulatory networks, and the timing of events, without loosing its attractive simplicity. According to present data, many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free type. From the point of view of the timing of events, standard RBN update their state synchronously. This assumption is open to discussion when dealing with biologically plausible networks. In particular, for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different parts of the network at different times, according to a strict sequence, which depends on the particular network under study. The expression of a gene depends on several transcription factors, the synthesis of which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed a new, more biologically plausible model. It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics that better captures the presence of an activation sequence of genes linked to the topological properties of the network. By simulating statistical ensembles of networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical biological network models. Moreover, the model demonstrates interesting scaling abilities as the size of the networks is increased.


Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 1291-1298 ◽  
Author(s):  
Shawn M Gomez ◽  
Shaw-Hwa Lo ◽  
Andrey Rzhetsky

Abstract Regulatory networks provide control over complex cell behavior in all kingdoms of life. Here we describe a statistical model, based on representing proteins as collections of domains or motifs, which predicts unknown molecular interactions within these biological networks. Using known protein-protein interactions of Saccharomyces cerevisiae as training data, we were able to predict the links within this network with only 7% false-negative and 10% false-positive error rates. We also use Markov chain Monte Carlo simulation for the prediction of networks with maximum probability under our model. This model can be applied across species, where interaction data from one (or several) species can be used to infer interactions in another. In addition, the model is extensible and can be analogously applied to other molecular data (e.g., DNA sequences).


2021 ◽  
Vol 9 (7) ◽  
pp. 1395
Author(s):  
Juan M. Escorcia-Rodríguez ◽  
Andreas Tauch ◽  
Julio A. Freyre-González

Corynebacterium glutamicum is a Gram-positive bacterium found in soil where the condition changes demand plasticity of the regulatory machinery. The study of such machinery at the global scale has been challenged by the lack of data integration. Here, we report three regulatory network models for C. glutamicum: strong (3040 interactions) constructed solely with regulations previously supported by directed experiments; all evidence (4665 interactions) containing the strong network, regulations previously supported by nondirected experiments, and protein–protein interactions with a direct effect on gene transcription; sRNA (5222 interactions) containing the all evidence network and sRNA-mediated regulations. Compared to the previous version (2018), the strong and all evidence networks increased by 75 and 1225 interactions, respectively. We analyzed the system-level components of the three networks to identify how they differ and compared their structures against those for the networks of more than 40 species. The inclusion of the sRNA-mediated regulations changed the proportions of the system-level components and increased the number of modules but decreased their size. The C. glutamicum regulatory structure contrasted with other bacterial regulatory networks. Finally, we used the strong networks of three model organisms to provide insights and future directions of the C.glutamicum regulatory network characterization.


2020 ◽  
Author(s):  
Erik Hoel ◽  
Brennan Klein ◽  
Anshuman Swain ◽  
Ross Grebenow ◽  
Michael Levin

AbstractThe internal workings of biological systems are notoriously difficult to understand. Due to the prevalence of noise and degeneracy in evolved systems, in many cases the workings of everything from gene regulatory networks to protein-protein interactome networks remain black boxes. One consequence of this black-box nature is that it is unclear at which scale to analyze biological systems to best understand their function. We analyzed the protein interactomes of over 1800 species, containing in total 8,782,166 protein-protein interactions, at different scales. We demonstrate the emergence of higher order ‘macroscales’ in these interactomes and that these biological macroscales are associated with lower noise and degeneracy and therefore lower uncertainty. Moreover, the nodes in the interactomes that make up the macroscale are more resilient compared to nodes that do not participate in the macroscale. These effects are more pronounced in interactomes of Eukaryota, as compared to Prokaryota. This points to plausible evolutionary adaptation for macroscales: biological networks evolve informative macroscales to gain benefits of both being uncertain at lower scales to boost their resilience, and also being ‘certain’ at higher scales to increase their effectiveness at information transmission. Our work explains some of the difficulty in understanding the workings of biological networks, since they are often most informative at a hidden higher scale, and demonstrates the tools to make these informative higher scales explicit.


2021 ◽  
Author(s):  
Juan Miguel Escorcia-Rodríguez ◽  
Andreas Tauch ◽  
Julio Augusto Freyre-González

Corynebacterium glutamicum is a Gram-positive bacterium found in soil where the condition changes demand plasticity of the regulatory machinery. The study of such machinery at the global scale has been challenged by the lack of data integration. Here, we report three regulatory network models for C. glutamicum: strong (3040 interactions) constructed solely with regulations previously supported by directed experiments; all evidence (4665 interactions) containing the strong network, regulations previously supported by non-directed experiments, and protein-protein interactions with a direct effect on gene transcription; and sRNA (5222 interactions) containing the all evidence network and sRNA-mediated regulations. Compared to the previous version (2018), the strong and all evidence networks increased by 75 and 1225 interactions, respectively. We analyzed the system-level components of the three networks to identify how they differ and compared their structures against those for the networks of more than 40 species. The inclusion of the sRNAs regulations changed the proportions of the system-level components and increased the number of modules but decreased their size. The C. glutamicum regulatory structure contrasted with other bacterial regulatory networks. Finally, we used the strong networks of three model organisms to provide insights and future directions of the C. glutamicum regulatory network characterization.


2008 ◽  
Vol 14 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Johannes F. Knabe ◽  
Chrystopher L. Nehaniv ◽  
Maria J. Schilstra

We study the evolvability and dynamics of artificial genetic regulatory networks (GRNs), as active control systems, realizing simple models of biological clocks that have evolved to respond to periodic environmental stimuli of various kinds with appropriate periodic behaviors. GRN models may differ in the evolvability of expressive regulatory dynamics. A new class of artificial GRNs with an evolvable number of complex cis-regulatory control sites—each involving a finite number of inhibitory and activatory binding factors—is introduced, allowing realization of complex regulatory logic. Previous work on biological clocks in nature has noted the capacity of clocks to oscillate in the absence of environmental stimuli, putting forth several candidate explanations for their observed behavior, related to anticipation of environmental conditions, compartmentation of activities in time, and robustness to perturbations of various kinds or to unselected accidents of neutral selection. Several of these hypotheses are explored by evolving GRNs with and without (Gaussian) noise and blackout periods for environmental stimulation. Robustness to certain types of perturbation appears to account for some, but not all, dynamical properties of the evolved networks. Unselected abilities, also observed for biological clocks, include the capacity to adapt to change in wavelength of environmental stimulus and to clock resetting.


Sign in / Sign up

Export Citation Format

Share Document