Simulation study in Probabilistic Boolean Network models for genetic regulatory networks

2007 ◽  
Vol 1 (3) ◽  
pp. 217 ◽  
Author(s):  
Shu Qin Zhang ◽  
Wai Ki Ching ◽  
Michael K. Ng ◽  
Tatsuya Akutsu
2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Le Shu ◽  
Yuqi Zhao ◽  
Aldons J Lusis ◽  
Ke Hao ◽  
Thomas Quertermous ◽  
...  

Insulin resistance (IR) is a critical pathogenic factor for highly prevalent modern cardiometabolic diseases, including coronary artery disease (CAD) and type 2 diabetes (T2D). However, the molecular circuitries underlying IR remain to be elucidated. The GENEticS of Insulin Sensitivity Consortium (GENESIS) conducted genome-wide association studies (GWAS) for direct measures of IR using euglycemic clamp or insulin suppression test. We sought to identify gene networks and their key intervening drivers for IR by performing a comprehensive integrative analysis leveraging GWAS data from seven GENESIS cohorts representing three ethnic groups - Europeans, Asians and Hispanics, along with expression quantitative trait loci, ENCODE, and tissue-specific gene network models (both co-expression and graphical models) from IR relevant tissues. Integration of the multi-ethnic GWAS with diverse functional genomics information captured shared IR pathways and networks across ethnicities that are independent of body mass index, including GLUT4 translocation regulation, insulin signaling, MAPK signaling, interleukin signaling, extracellular matrix, branched-chain amino acids metabolisms, cell cycle, and oxidative phosphorylation. Further integration of these GWAS-informed IR processes with graphical gene networks uncovered potential key regulators including HADH, COX5A, VCAN and TOP2A , whose network neighbors are consistently enriched for the genetic association signals of IR across ethnicities, and show significant correlation with IR, fasting glucose and insulin levels in the transcriptomic-wide association data from a Hybrid Mouse Diversity Panel comprised of >100 strains fed with high-fat diet. Findings from this in-depth assessment of genetic and functional data from multiple human cohorts provide new understanding of the pathways, gene networks and potential regulators contributing to IR. These results will also facilitate future functional investigations to unveil how DNA variations translate into IR.


Author(s):  
Christian Darabos ◽  
Mario Giacobini ◽  
Marco Tomassini

Random Boolean Networks (RBN) have been introduced by Kauffman more than thirty years ago as a highly simplified model of genetic regulatory networks. This extremely simple and abstract model has been studied in detail and has been shown capable of extremely interesting dynamical behavior. First of all, as some parameters are varied such as the network’s connectivity, or the probability of expressing a gene, the RBN can go through a phase transition, going from an ordered regime to a chaotic one. Kauffman’s suggestion is that cell types correspond to attractors in the RBN phase space, and only those attractors that are short and stable under perturbations will be of biological interest. Thus, according to Kauffman, RBN lying at the edge between the ordered phase and the chaotic phase can be seen as abstract models of genetic regulatory networks. The original view of Kauffman, namely that these models may be useful for understanding real-life cell regulatory networks, is still valid, provided that the model is updated to take into account present knowledge about the topology of real gene regulatory networks, and the timing of events, without loosing its attractive simplicity. According to present data, many biological networks, including genetic regulatory networks, seem, in fact, to be of the scale-free type. From the point of view of the timing of events, standard RBN update their state synchronously. This assumption is open to discussion when dealing with biologically plausible networks. In particular, for genetic regulatory networks, this is certainly not the case: genes seem to be expressed in different parts of the network at different times, according to a strict sequence, which depends on the particular network under study. The expression of a gene depends on several transcription factors, the synthesis of which appear to be neither fully synchronous nor instantaneous. Therefore, we have recently proposed a new, more biologically plausible model. It assumes a scale-free topology of the networks and we define a suitable semi-synchronous dynamics that better captures the presence of an activation sequence of genes linked to the topological properties of the network. By simulating statistical ensembles of networks, we discuss the attractors of the dynamics, showing that they are compatible with theoretical biological network models. Moreover, the model demonstrates interesting scaling abilities as the size of the networks is increased.


2014 ◽  
Vol 686 ◽  
pp. 463-469
Author(s):  
Zhen Cheng Fang

Along with the completion of HGP (human genome project), huge amounts of genetic data constantly emerge. Research suggests that genes are not in independent existence and the expression of a gene will promote or inhibit the expression of another gene; if the expression of a gene makes the biochemical environment of cells changed, the expression of a series of genes will be affected. In order to get a better understanding of the relationship between genes, all sorts of gene regulatory network models have been established by scientists. In this paper, a variety of gene regulatory networks are first introduced according to the process of this subject research, and then the most basic network (i.e. Boolean network) is emphatically analyzed, and then a new method (i.e. Boolean network based on the theory of circuit) to describe Boolean network is drawn forth. After the shortcomings of the Boolean network proposed in the past are analyzed, a simulation circuit Boolean model is established using EDA technology in order to improve the Boolean network.


2008 ◽  
Vol 14 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Johannes F. Knabe ◽  
Chrystopher L. Nehaniv ◽  
Maria J. Schilstra

We study the evolvability and dynamics of artificial genetic regulatory networks (GRNs), as active control systems, realizing simple models of biological clocks that have evolved to respond to periodic environmental stimuli of various kinds with appropriate periodic behaviors. GRN models may differ in the evolvability of expressive regulatory dynamics. A new class of artificial GRNs with an evolvable number of complex cis-regulatory control sites—each involving a finite number of inhibitory and activatory binding factors—is introduced, allowing realization of complex regulatory logic. Previous work on biological clocks in nature has noted the capacity of clocks to oscillate in the absence of environmental stimuli, putting forth several candidate explanations for their observed behavior, related to anticipation of environmental conditions, compartmentation of activities in time, and robustness to perturbations of various kinds or to unselected accidents of neutral selection. Several of these hypotheses are explored by evolving GRNs with and without (Gaussian) noise and blackout periods for environmental stimulation. Robustness to certain types of perturbation appears to account for some, but not all, dynamical properties of the evolved networks. Unselected abilities, also observed for biological clocks, include the capacity to adapt to change in wavelength of environmental stimulus and to clock resetting.


Algorithms ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 268
Author(s):  
Katsuaki Umiji ◽  
Koichi Kobayashi ◽  
Yuh Yamashita

A probabilistic Boolean network (PBN) is well known as one of the mathematical models of gene regulatory networks. In a Boolean network, expression of a gene is approximated by a binary value, and its time evolution is expressed by Boolean functions. In a PBN, a Boolean function is probabilistically chosen from candidates of Boolean functions. One of the authors has proposed a method to construct a PBN from imperfect information. However, there is a weakness that the number of candidates of Boolean functions may be redundant. In this paper, this construction method is improved to efficiently utilize given information. To derive Boolean functions and those selection probabilities, the linear programming problem is solved. Here, we introduce the objective function to reduce the number of candidates. The proposed method is demonstrated by a numerical example.


2021 ◽  
Author(s):  
Santosh Manicka ◽  
Kathleen Johnson ◽  
David Murrugarra ◽  
Michael Levin

Nonlinearity is a characteristic of complex biological regulatory networks that has implications ranging from therapy to control. To better understand its nature, we analyzed a suite of published Boolean network models, containing a variety of complex nonlinear interactions, with an approach involving a probabilistic generalization of Boolean logic that George Boole himself had proposed. Leveraging the continuous-nature of this formulation using Taylor-decomposition methods revealed the distinct layers of nonlinearity of the models. A comparison of the resulting series of model approximations with the corresponding sets of randomized ensembles furthermore revealed that the biological networks are relatively more linearly approximable. We hypothesize that this is a result of optimization by natural selection for the purpose of controllability.


Sign in / Sign up

Export Citation Format

Share Document