Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection

2008 ◽  
Vol 16 (2) ◽  
pp. 225-255 ◽  
Author(s):  
Maoguo Gong ◽  
Licheng Jiao ◽  
Haifeng Du ◽  
Liefeng Bo

Nondominated Neighbor Immune Algorithm (NNIA) is proposed for multiobjective optimization by using a novel nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators, and elitism. The unique selection technique of NNIA only selects minority isolated nondominated individuals in the population. The selected individuals are then cloned proportionally to their crowding-distance values before heuristic search. By using the nondominated neighbor-based selection and proportional cloning, NNIA pays more attention to the less-crowded regions of the current trade-off front. We compare NNIA with NSGA-II, SPEA2, PESA-II, and MISA in solving five DTLZ problems, five ZDT problems, and three low-dimensional problems. The statistical analysis based on three performance metrics including the coverage of two sets, the convergence metric, and the spacing, show that the unique selection method is effective, and NNIA is an effective algorithm for solving multiobjective optimization problems. The empirical study on NNIA's scalability with respect to the number of objectives shows that the new algorithm scales well along the number of objectives.

2020 ◽  
Vol 13 (1) ◽  
pp. 48-68
Author(s):  
Alexandre Som ◽  
Kounhinir Some ◽  
Abdoulaye Compaore ◽  
Blaise Some

This work is devoted to evaluate the performances of the MOMA-plus method in solving multiobjective optimization problems. This assessment is doing on the complexity of its algorithm, the convergence and the diversity of solutions in relation to the Pareto front. All these parameters were evaluated on non-linear multiobjective test problems and obtained solutions are compared with those provided by the NSGA-II method. This comparative study made it possible tohighlight the performances of MOMA-plus method for solving non-linear multiobjective problems.


2020 ◽  
Vol 28 (3) ◽  
pp. 339-378 ◽  
Author(s):  
Zhun Fan ◽  
Wenji Li ◽  
Xinye Cai ◽  
Hui Li ◽  
Caimin Wei ◽  
...  

Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness, and diversity-hardness. We then develop a general toolkit to construct difficulty adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. In fact, the combination of the three primary constraint functions with different parameters allows the construction of a large variety of CMOPs, with difficulty that can be defined by a triplet, with each of its parameters specifying the level of one of the types of primary difficulty. Furthermore, the number of objectives in this toolkit can be scaled beyond three. Based on this toolkit, we suggest nine difficulty adjustable and scalable CMOPs and nine CMaOPs, to be called DAS-CMOP1-9 and DAS-CMaOP1-9, respectively. To evaluate the proposed test problems, two popular CMOEAs—MOEA/D-CDP (MOEA/D with constraint dominance principle) and NSGA-II-CDP (NSGA-II with constraint dominance principle) and two popular constrained many-objective evolutionary algorithms (CMaOEAs)—C-MOEA/DD and C-NSGA-III—are used to compare performance on DAS-CMOP1-9 and DAS-CMaOP1-9 with a variety of difficulty triplets, respectively. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility-, and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.


Author(s):  
Qiuzhen Lin ◽  
Jianyong Chen ◽  
Zhi-Hui Zhan ◽  
Wei-neng Chen ◽  
Carlos Coello Coello ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 48-68
Author(s):  
Alexandre Som ◽  
Kounhinir Some ◽  
Abdoulaye Compaore ◽  
Blaise Some

This work is devoted to evaluate the performances of the MOMA-plus method in solving multiobjective optimization problems. This assessment is doing on the complexity of its algorithm, the convergence and the diversity of solutions in relation to the Pareto front. All these parameters were evaluated on non-linear multiobjective test problems and obtained solutions are compared with those provided by the NSGA-II method. This comparative study made it possible tohighlight the performances of MOMA-plus method for solving non-linear multiobjective problems.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


Sign in / Sign up

Export Citation Format

Share Document