dominance principle
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257003
Author(s):  
Martin Roessler ◽  
Jochen Schmitt ◽  
Olaf Schoffer

Background The standardized mortality ratio (SMR) is often used to assess and compare hospital performance. While it has been recognized that hospitals may differ in their SMRs due to differences in patient composition, there is a lack of rigorous analysis of this and other—largely unrecognized—properties of the SMR. Methods This paper proposes five axiomatic requirements for adequate standardized mortality measures: strict monotonicity (monotone relation to actual mortality rates), case-mix insensitivity (independence of patient composition), scale insensitivity (independence of hospital size), equivalence principle (equal rating of hospitals with equal actual mortality rates in all patient groups), and dominance principle (better rating of unambiguously better performing hospitals). Given these axiomatic requirements, effects of variations in patient composition, hospital size, and actual and expected mortality rates on the SMR were examined using basic algebra and calculus. In this regard, we distinguished between standardization using expected mortality rates derived from a different dataset (external standardization) and standardization based on a dataset including the considered hospitals (internal standardization). The results were illustrated by hypothetical examples. Results Under external standardization, the SMR fulfills the axiomatic requirements of strict monotonicity and scale insensitivity but violates the requirement of case-mix insensitivity, the equivalence principle, and the dominance principle. All axiomatic requirements not fulfilled under external standardization are also not fulfilled under internal standardization. In addition, the SMR under internal standardization is scale sensitive and violates the axiomatic requirement of strict monotonicity. Conclusions The SMR fulfills only two (none) out of the five proposed axiomatic requirements under external (internal) standardization. Generally, the SMRs of hospitals are differently affected by variations in case mix and actual and expected mortality rates unless the hospitals are identical in these characteristics. These properties hamper valid assessment and comparison of hospital performance based on the SMR.


2020 ◽  
Vol 28 (3) ◽  
pp. 339-378 ◽  
Author(s):  
Zhun Fan ◽  
Wenji Li ◽  
Xinye Cai ◽  
Hui Li ◽  
Caimin Wei ◽  
...  

Multiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs). These are feasibility-hardness, convergence-hardness, and diversity-hardness. We then develop a general toolkit to construct difficulty adjustable and scalable CMOPs (DAS-CMOPs, or DAS-CMaOPs when the number of objectives is greater than three) with three types of parameterized constraint functions developed to capture the three proposed types of difficulty. In fact, the combination of the three primary constraint functions with different parameters allows the construction of a large variety of CMOPs, with difficulty that can be defined by a triplet, with each of its parameters specifying the level of one of the types of primary difficulty. Furthermore, the number of objectives in this toolkit can be scaled beyond three. Based on this toolkit, we suggest nine difficulty adjustable and scalable CMOPs and nine CMaOPs, to be called DAS-CMOP1-9 and DAS-CMaOP1-9, respectively. To evaluate the proposed test problems, two popular CMOEAs—MOEA/D-CDP (MOEA/D with constraint dominance principle) and NSGA-II-CDP (NSGA-II with constraint dominance principle) and two popular constrained many-objective evolutionary algorithms (CMaOEAs)—C-MOEA/DD and C-NSGA-III—are used to compare performance on DAS-CMOP1-9 and DAS-CMaOP1-9 with a variety of difficulty triplets, respectively. The experimental results reveal that mechanisms in MOEA/D-CDP may be more effective in solving convergence-hard DAS-CMOPs, while mechanisms of NSGA-II-CDP may be more effective in solving DAS-CMOPs with simultaneous diversity-, feasibility-, and convergence-hardness. Mechanisms in C-NSGA-III may be more effective in solving feasibility-hard CMaOPs, while mechanisms of C-MOEA/DD may be more effective in solving CMaOPs with convergence-hardness. In addition, none of them can solve these problems efficiently, which stimulates us to continue to develop new CMOEAs and CMaOEAs to solve the suggested DAS-CMOPs and DAS-CMaOPs.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-18
Author(s):  
Jinil Persis Devarajan ◽  
T. Paul Robert

Data aggregation in WSNs is an interesting problem wherein data sensed by the sensors is routed to an aggregation node in an efficient way. Since the sensors are battery operated, it is very important for a routing protocol to conserve energy and also ensure load balancing and faster delivery. In this study, a multi-objective linear programming model is developed for this problem and solved using an exact algorithm applying dominance principle. In order to ensure faster convergence, routing algorithms incorporating strategies of swarms in nature such as Ants, Bees and Fireflies are adapted. In the simulation study, it is quite evident from the convergence characteristics, swarm intelligent algorithms could converge earlier than the exact algorithm with convergence time lesser by 90%. Moreover, when exact algorithm could solve smaller networks, the swarm intelligent algorithms could solve even larger network instances. Firefly algorithm is able to yield approximated pareto – optimal routes which outperforms ant colony optimization and bee colony optimization algorithms.


Author(s):  
Ralf M. Bader

The first part of Chapter 11 uses considerations of sequential choice to argue that suboptimal beneficence is impermissible. The second part shows how the prohibition on suboptimal beneficence follows from an agent-relative theory that understands permissible actions in terms of a dominance principle defined over both the agent-relative and the agent-neutral ordering. This theory incorporates agent-relative prerogatives that ensure that agents are not required to do what is impartially best, yet rules out suboptimal beneficence. The third part shows that the prohibition on suboptimal beneficence is in tension with dynamic consistency, since it leads to violations of expansion consistency condition BETA. If an agent makes use of myopic choice principles (which are purely forward-looking) or sophisticated choice principles (that make use of backwards induction), then there can be cases in which he can, by means of a sequence of permissible choices, bring about an outcome that is deemed to be impermissible from the outset. This problem is addressed by developing global choice principles that ensure dynamic consistency.


2019 ◽  
Vol 74 ◽  
pp. 621-633 ◽  
Author(s):  
Zhun Fan ◽  
Yi Fang ◽  
Wenji Li ◽  
Xinye Cai ◽  
Caimin Wei ◽  
...  

2018 ◽  
Vol 31 (1) ◽  
pp. 141-153
Author(s):  
Aleksandar Janjic ◽  
Lazar Velimirovic ◽  
Miomir Stankovic ◽  
Vladimir Djordjevic

The successful automation of a smart home relies on the ability of the smart home control system to organize, process, and analyze different sources of information, according to several criteria. Because of variety of key design criteria that every smart home of the future should meet, the main challenge is the trade-off between them in uncertain environment. In this paper, a problem of smart home design has been solved using the methodology based on multiplicative form of multi-attribute utility theory. Aggregated functions describing different smart home alternatives are compared using stochastic dominance principle. The aggregation of different criteria has been performed through their numerical convolution, unlike usual approach of pairwise comparison, allowing only the additive form of aggregation of individual criteria. The methodology is illustrated on the smart home controller parameter setting.


Sign in / Sign up

Export Citation Format

Share Document