Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms

2010 ◽  
Vol 18 (3) ◽  
pp. 491-514 ◽  
Author(s):  
Martin Serpell ◽  
James E. Smith

The choice of mutation rate is a vital factor in the success of any genetic algorithm (GA), and for permutation representations this is compounded by the availability of several alternative mutation operators. It is now well understood that there is no one “optimal choice”; rather, the situation changes per problem instance and during evolution. This paper examines whether this choice can be left to the processes of evolution via self-adaptation, thus removing this nontrivial task from the GA user and reducing the risk of poor performance arising from (inadvertent) inappropriate decisions. Self-adaptation has been proven successful for mutation step sizes in the continuous domain, and for the probability of applying bitwise mutation to binary encodings; here we examine whether this can translate to the choice and parameterisation of mutation operators for permutation encodings. We examine one method for adapting the choice of operator during runtime, and several different methods for adapting the rate at which the chosen operator is applied. In order to evaluate these algorithms, we have used a range of benchmark TSP problems. Of course this paper is not intended to present a state of the art in TSP solvers; rather, we use this well known problem as typical of many that require a permutation encoding, where our results indicate that self-adaptation can prove beneficial. The results show that GAs using appropriate methods to self-adapt their mutation operator and mutation rate find solutions of comparable or lower cost than algorithms with “static” operators, even when the latter have been extensively pretuned. Although the adaptive GAs tend to need longer to run, we show that is a price well worth paying as the time spent finding the optimal mutation operator and rate for the nonadaptive versions can be considerable. Finally, we evaluate the sensitivity of the self-adaptive methods to changes in the implementation, and to the choice of other genetic operators and population models. The results show that the methods presented are robust, in the sense that the performance benefits can be obtained in a wide range of host algorithms.

2004 ◽  
Vol 12 (3) ◽  
pp. 273-302 ◽  
Author(s):  
Manuel Lozano ◽  
Francisco Herrera ◽  
Natalio Krasnogor ◽  
Daniel Molina

This paper presents a real-coded memetic algorithm that applies a crossover hill-climbing to solutions produced by the genetic operators. On the one hand, the memetic algorithm provides global search (reliability) by means of the promotion of high levels of population diversity. On the other, the crossover hill-climbing exploits the self-adaptive capacity of real-parameter crossover operators with the aim of producing an effective local tuning on the solutions (accuracy). An important aspect of the memetic algorithm proposed is that it adaptively assigns different local search probabilities to individuals. It was observed that the algorithm adjusts the global/local search balance according to the particularities of each problem instance. Experimental results show that, for a wide range of problems, the method we propose here consistently outperforms other real-coded memetic algorithms which appeared in the literature.


Author(s):  
Karla Taboada ◽  
◽  
Eloy Gonzales ◽  
Kaoru Shimada ◽  
Shingo Mabu ◽  
...  

In this paper we propose a method of association rule mining using Genetic Network Programming (GNP) with adaptive and self-adaptive mechanisms of genetic operators in order to improve the performance of association rule extraction systems. GNP is one of the evolutionary methods, whose directed graphs are evolved to find a solution as individuals. Adaptation behavior in GNP is related to adjust the setting of control parameters such as the proportion of crossover and mutation. The aim is not only to find suitable adjustments but to do it efficiently. Regarding to self-adaptation, the algorithm controls the setting of these parameters themselves – embedding them into an individual’s genome and evolving them, and it usually changes the structure of the evolution which is typically static. Specifically, self-adaptation of crossover and mutation operators in GNP aiming to change the rate of them by evolution is studied in this paper. Our method based on GNP can measure the significance of the association via the chi-squared test and obtain a sufficient number of important association rules. Extracted association rules are stored in a pool all together through generations and reflected in three genetic operators as acquired information.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Lev Kazakovtsev ◽  
Ivan Rozhnov ◽  
Guzel Shkaberina ◽  
Viktor Orlov

The k-means problem is one of the most popular models of cluster analysis. The problem is NP-hard, and modern literature offers many competing heuristic approaches. Sometimes practical problems require obtaining such a result (albeit notExact), within the framework of the k-means model, which would be difficult to improve by known methods without a significant increase in the computation time or computational resources. In such cases, genetic algorithms with greedy agglomerative heuristic crossover operator might be a good choice. However, their computational complexity makes it difficult to use them for large-scale problems. The crossover operator which includes the k-means procedure, taking the absolute majority of the computation time, is essential for such algorithms, and other genetic operators such as mutation are usually eliminated or simplified. The importance of maintaining the population diversity, in particular, with the use of a mutation operator, is more significant with an increase in the data volume and available computing resources such as graphical processing units (GPUs). In this article, we propose a new greedy heuristic mutation operator for such algorithms and investigate the influence of new and well-known mutation operators on the objective function value achieved by the genetic algorithms for large-scale k-means problems. Our computational experiments demonstrate the ability of the new mutation operator, as well as the mechanism for organizing subpopulations, to improve the result of the algorithm.


2013 ◽  
Vol 21 (1) ◽  
pp. 29-64 ◽  
Author(s):  
Rui Li ◽  
Michael T.M. Emmerich ◽  
Jeroen Eggermont ◽  
Thomas Bäck ◽  
M. Schütz ◽  
...  

Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.


Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 778
Author(s):  
Ann-Rong Yan ◽  
Indira Samarawickrema ◽  
Mark Naunton ◽  
Gregory M. Peterson ◽  
Desmond Yip ◽  
...  

Venous thromboembolism (VTE) is a significant cause of mortality in patients with lung cancer. Despite the availability of a wide range of anticoagulants to help prevent thrombosis, thromboprophylaxis in ambulatory patients is a challenge due to its associated risk of haemorrhage. As a result, anticoagulation is only recommended in patients with a relatively high risk of VTE. Efforts have been made to develop predictive models for VTE risk assessment in cancer patients, but the availability of a reliable predictive model for ambulate patients with lung cancer is unclear. We have analysed the latest information on this topic, with a focus on the lung cancer-related risk factors for VTE, and risk prediction models developed and validated in this group of patients. The existing risk models, such as the Khorana score, the PROTECHT score and the CONKO score, have shown poor performance in external validations, failing to identify many high-risk individuals. Some of the newly developed and updated models may be promising, but their further validation is needed.


2009 ◽  
Vol 05 (02) ◽  
pp. 487-496 ◽  
Author(s):  
WEI FANG ◽  
JUN SUN ◽  
WENBO XU

Mutation operator is one of the mechanisms of evolutionary algorithms (EAs) and it can provide diversity in the search and help to explore the undiscovered search place. Quantum-behaved particle swarm optimization (QPSO), which is inspired by fundamental theory of PSO algorithm and quantum mechanics, is a novel stochastic searching technique and it may encounter local minima problem when solving multi-modal problems just as that in PSO. A novel mutation mechanism is proposed in this paper to enhance the global search ability of QPSO and a set of different mutation operators is introduced and implemented on the QPSO. Experiments are conducted on several well-known benchmark functions. Experimental results show that QPSO with some of the mutation operators is proven to be statistically significant better than the original QPSO.


Author(s):  
Esra'a Alkafaween ◽  
Ahmad B. A. Hassanat

Genetic algorithm (GA) is an efficient tool for solving optimization problems by evolving solutions, as it mimics the Darwinian theory of natural evolution. The mutation operator is one of the key success factors in GA, as it is considered the exploration operator of GA. Various mutation operators exist to solve hard combinatorial problems such as the TSP. In this paper, we propose a hybrid mutation operator called "IRGIBNNM", this mutation is a combination of two existing mutations; a knowledgebased mutation, and a random-based mutation. We also improve the existing “select best mutation” strategy using the proposed mutation. We conducted several experiments on twelve benchmark Symmetric traveling salesman problem (STSP) instances. The results of our experiments show the efficiency of the proposed mutation, particularly when we use it with some other mutations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Talgat R. Gazizov ◽  
Indira Ye. Sagiyeva ◽  
Sergey P. Kuksenko

In this paper we consider the complexity problem in electronics production process. Particularly, we investigate the ways to reduce sensitivity of transmission line characteristics to their parameter variations. The reduction is shown for the per-unit-length delay and characteristic impedance of several modifications of microstrip transmission lines. It can be obtained by means of making an optimal choice of parameter values, enabling proper electric field redistribution in the air and the substrate. To achieve this aim we used an effective simulation technique and software tools. Taken together, for the first time, they have allowed formulating general approach which is relevant to solve a wide range of similar tasks.


2013 ◽  
Vol 52 (04) ◽  
pp. 351-359 ◽  
Author(s):  
M. O. Scheinhardt ◽  
A. Ziegler

Summary Background: Gene, protein, or metabolite expression levels are often non-normally distributed, heavy tailed and contain outliers. Standard statistical approaches may fail as location tests in this situation. Objectives: In three Monte-Carlo simulation studies, we aimed at comparing the type I error levels and empirical power of standard location tests and three adaptive tests [O’Gorman, Can J Stat 1997; 25: 269 –279; Keselman et al., Brit J Math Stat Psychol 2007; 60: 267– 293; Szymczak et al., Stat Med 2013; 32: 524 – 537] for a wide range of distributions. Methods: We simulated two-sample scena -rios using the g-and-k-distribution family to systematically vary tail length and skewness with identical and varying variability between groups. Results: All tests kept the type I error level when groups did not vary in their variability. The standard non-parametric U-test per -formed well in all simulated scenarios. It was outperformed by the two non-parametric adaptive methods in case of heavy tails or large skewness. Most tests did not keep the type I error level for skewed data in the case of heterogeneous variances. Conclusions: The standard U-test was a powerful and robust location test for most of the simulated scenarios except for very heavy tailed or heavy skewed data, and it is thus to be recommended except for these cases. The non-parametric adaptive tests were powerful for both normal and non-normal distributions under sample variance homogeneity. But when sample variances differed, they did not keep the type I error level. The parametric adaptive test lacks power for skewed and heavy tailed distributions.


Author(s):  
Keshav K Acharya ◽  
Habib Zafarullah

This paper analyses factors influencing effective service delivery at the grassroots level in Nepal, through a qualitative field study which includes in-depth interviews with 110 community-based organisations (CBOs) and five focus group discussions. The findings indicate that a wide range of governance arrangements have been deployed in the effort to achieve effective service delivery. However, many CBOs lack a solid governance system for their development undertakings, leading to poor performance and lack of accountability. A number of factors are identified as causing this weak practical application of community governance, notably institutional mechanisms, socio-economic structures, power politics and interests, capacity limitations and resource constraints.


Sign in / Sign up

Export Citation Format

Share Document