scholarly journals Spatial Transformations in the Parietal Cortex Using Basis Functions

1997 ◽  
Vol 9 (2) ◽  
pp. 222-237 ◽  
Author(s):  
Alexandre Pouget ◽  
Terrence J. Sejnowski

Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.

A new ‘most economical’ algorithm for the construction of diatomics in molecules secular equations is described. The method does not require the basis functions to be written down explicitly, since overlap may be factored out of the equations entirely. The theory is presented in detail for the particular case of homogeneous alkali metal clusters. A knowledge of the irreducible representations of the symmetric group for the Jahn-Serber basis set is necessary. The irreducible representations are derived by a genealogical procedure. Some preliminary calculations are presented for the molecules Li 3 through Li 6 , Li + 3 and Li + 4 . The lithium clusters are found to be stable with respect to all possible dissociations, and the i.ps of Li 3 and Li 4 are in agreement with the trends for the species Na 3 , Na 4 , K 3 , K 4 , etc., whose i.ps have been measured experimentally.


Author(s):  
Kostas F. Lambrakos ◽  
Djoni E. Sidarta ◽  
Hugh M. Thompson ◽  
Atle Steen ◽  
Roger W. Burke

The paper presents two different approaches to construct subsets of current profiles from a large set of long term current profiles for the purpose of performing calculations for riser fatigue damage from vortex induced vibrations (VIV). The subsets are intended to reproduce the fatigue damage from the full set of current profiles. In the first approach, the full set of profiles is first sorted into bins based on current magnitude, direction and shear in the profile. The profiles within each bin are then reduced to a single constructed profile through one of many possible current averaging schemes. The present study includes two types of constructed profiles; one profile is generated by the average value of the currents for each bin and the other by the average value plus one standard deviation. The second approach is based on first performing a simplified and computationally efficient VIV analysis of the full set of profiles. The profiles are then sorted into bins by the dominant excitation mode, and then a single profile is chosen to represent all the profiles that excite the mode of interest. The chosen profile for the mode of interest has VIV power-in which is close to the average power-in for all the profiles that excite the mode. The number of profiles in the subset is equal to the number of modes that are excited by the full set of profiles. The VIV power-in in this paper is estimated through a simplified procedure that is consistent with the SHEAR7 methodology. Other available codes can also be used for the simplified VIV calculations.


2020 ◽  
Vol 23 (8) ◽  
pp. 1004-1015 ◽  
Author(s):  
Ryo Sasaki ◽  
Akiyuki Anzai ◽  
Dora E. Angelaki ◽  
Gregory C. DeAngelis

2004 ◽  
Vol 5 (3) ◽  
Author(s):  
Marie Avillac ◽  
Etienne Olivier ◽  
Sophie Den�ve ◽  
Suliann Ben Hamed ◽  
Jean-Ren� Duhamel

2015 ◽  
Vol 7 (4) ◽  
pp. 496-509 ◽  
Author(s):  
Fuzhang Wang ◽  
Zhaoxing Ma

AbstractA novel meshless scheme is proposed for inverse source identification problems of Helmholtz-type equations. It is formulated by the non-singular general solutions of the Helmholtz-type equations augmented with radial basis functions. Under this meshless scheme, we can determine smooth source terms from partially accessible boundary measurements with accurate results. Numerical examples are presented to verify validity and accuracy of the present scheme. It is demonstrated that the present scheme is simple, accurate, stable and computationally efficient for inverse smooth source identification problems.


Sign in / Sign up

Export Citation Format

Share Document