Switching of Sensorimotor Transformations: Antisaccades and Parietal Cortex

Author(s):  
Shabtai Barash ◽  
Mingsha Zhang
1997 ◽  
Vol 9 (2) ◽  
pp. 222-237 ◽  
Author(s):  
Alexandre Pouget ◽  
Terrence J. Sejnowski

Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.


2007 ◽  
Vol 97 (1) ◽  
pp. 387-406 ◽  
Author(s):  
Esther P. Gardner ◽  
K. Srinivasa Babu ◽  
Shari D. Reitzen ◽  
Soumya Ghosh ◽  
Alice S. Brown ◽  
...  

Hand manipulation neurons in areas 5 and 7b/anterior intraparietal area (AIP) of posterior parietal cortex were analyzed in three macaque monkeys during a trained prehension task. Digital video recordings of hand kinematics synchronized to neuronal spike trains were used to correlate firing rates of 128 neurons with hand actions as the animals grasped and lifted rectangular and round objects. We distinguished seven task stages: approach, contact, grasp, lift, hold, lower, and relax. Posterior parietal cortex (PPC) firing rates were highest during object acquisition; 88% of task-related area 5 neurons and 77% in AIP/7b fired maximally during stages 1, 2, or 3. Firing rates rose 200–500 ms before contact, peaked at contact, and declined after grasp was secured. 83% of area 5 neurons and 72% in AIP/7b showed significant increases in mean rates during approach as the fingers were preshaped for grasp. Somatosensory signals at contact provided feedback concerning the accuracy of reach and helped guide the hand to grasp sites. In error trials, tactile information was used to abort grasp, or to initiate corrective actions to achieve task goals. Firing rates declined as lift began. 41% of area 5 neurons and 38% in AIP/7b were inhibited during holding, and returned to baseline when grasp was relaxed. Anatomical connections suggest that area 5 provides somesthetic information to circuits linking AIP/7b to frontal motor areas involved in grasping. Area 5 may also participate in sensorimotor transformations coordinating reach and grasp behaviors and provide on-line feedback needed for goal-directed hand movements.


2019 ◽  
Author(s):  
Luigi Cattaneo ◽  
Davide Giampiccolo ◽  
Pietro Meneghelli ◽  
Vincenzo Tramontano ◽  
Francesco Sala

Abstractthe function of the primate’s posterior parietal cortex in sensorimotor transformations is well-established, though in humans its complexity is still challenging. Well-established models indicate that the posterior parietal cortex influences motor output indirectly, by means of connections to the premotor cortex, which in turn is directly connected to the motor cortex. The possibility that the posterior parietal cortex could be at the origin of direct afferents to M1 has been suggested in humans but has never been confirmed directly. In the present work we assessed during intraoperative monitoring of the corticospinal tract in brain tumour patients the existence of short-latency effects of parietal stimulation on corticospinal excitability to the upper limb. We identified several foci within the inferior parietal lobule that drove short-latency influences on cortical motor output. Active foci were distributed along the postcentral gyrus and clustered around the anterior intraparietal area and around the parietal operculum. For the first time in humans, the present data show direct evidence in favour of a distributed system of connections from the posterior parietal cortex to the ipsilateral primary motor cortex.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ting-Yu Chang ◽  
Raymond Doudlah ◽  
Byounghoon Kim ◽  
Adhira Sunkara ◽  
Lowell W Thompson ◽  
...  

Three-dimensional (3D) representations of the environment are often critical for selecting actions that achieve desired goals. The success of these goal-directed actions relies on 3D sensorimotor transformations that are experience-dependent. Here we investigated the relationships between the robustness of 3D visual representations, choice-related activity, and motor-related activity in parietal cortex. Macaque monkeys performed an eight-alternative 3D orientation discrimination task and a visually guided saccade task while we recorded from the caudal intraparietal area using laminar probes. We found that neurons with more robust 3D visual representations preferentially carried choice-related activity. Following the onset of choice-related activity, the robustness of the 3D representations further increased for those neurons. We additionally found that 3D orientation and saccade direction preferences aligned, particularly for neurons with choice-related activity, reflecting an experience-dependent sensorimotor association. These findings reveal previously unrecognized links between the fidelity of ecologically relevant object representations, choice-related activity, and motor-related activity.


2020 ◽  
Vol 31 (2) ◽  
pp. 62-68
Author(s):  
Sara E. Holm ◽  
Alexander Schmidt ◽  
Christoph J. Ploner

Abstract. Some people, although they are perfectly healthy and happy, cannot enjoy music. These individuals have musical anhedonia, a condition which can be congenital or may occur after focal brain damage. To date, only a few cases of acquired musical anhedonia have been reported in the literature with lesions of the temporo-parietal cortex being particularly important. Even less literature exists on congenital musical anhedonia, in which impaired connectivity of temporal brain regions with the Nucleus accumbens is implicated. Nonetheless, there is no precise information on the prevalence, causes or exact localization of both congenital and acquired musical anhedonia. However, the frequent involvement of temporo-parietal brain regions in neurological disorders such as stroke suggest the possibility of a high prevalence of this disorder, which leads to a considerable reduction in the quality of life.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document