excitation mode
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (49) ◽  
pp. 9-18
Author(s):  
Iu. Iu. Lysenko ◽  
◽  
Yu. V. Kuts ◽  
V. M. Uchanin ◽  
V. F. Petryk ◽  
...  

The formation and analysis of eddy current probe signals obtained in pulsed excitation mode is considered. The proposed method of implementing pulsed eddy current testing with the formation of attenuating harmonic oscillations is more resistant to the effects of noise and interference that accompany the process of inspected object parameters evaluation. The equivalent scheme of the system “test object–eddy current probe” is developed and analyzed. The obtained mathematical model of the eddy current probe signals allowed proposing the natural frequency and the attenuation as informative signals parameters, which are determined from signals phase and amplitude characteristics. Developed algorithm and the proposed methodology was implemented for evaluation of eddy current signals parameters and related characteristics of testing objects. This method was experimentally verified on a series of different test specimens. The obtained results confirm the possibility to apply the proposed informative signals to solve some problems concerned with automated eddy current testing. The formation and analysis of eddy current probe signals obtained in pulsed excitation mode are considered. The proposed method of implementing pulsed eddy current testing with the formation of attenuating harmonic oscillations is more resistant to the effects of noise and interference that accompany the process of automated eddy current testing. The equivalent scheme of the system “test object–eddy current probe” is developed and analyzed. The obtained mathematical model of the eddy current probe signals allows proposing the natural frequency and the attenuation as informative signals parameters, which are determined from signal phase and amplitude characteristics. Methods of increasing the accuracy of determining the eddy current probe signals attenuation and frequency using trends of signals phase and amplitude characteristics are considered. The proposed signal processing method was verified by modeling the process of determining the eddy current probe signals attenuation and the frequency from the signal with Gaussian noise. Algorithmic and software were developed based on the simulation results and the proposed improved methodology was implemented for determining signals parameters and related parameters and characteristics of testing objects.


2021 ◽  
Vol 29 (6) ◽  
pp. 905-914
Author(s):  
Nataliia Grigorieva ◽  

Topic. The paper is devoted to the study of synchronization of a gyrotron by an external harmonic signal. A theoretical study of gyrotron synchronization processes by means of a computational experiment based on certain traditional models of microwave electronics does not provide a complete description of the synchronization pattern. Therefore, the goal of the paper is to develop a modified quasi-linear model based on an approximation of the electron susceptibility by rational functions. Methods. The developed model allows for bifurcation analysis of synchronization processes. On its basis, stationary states are determined and their stability analysis is carried out. The results are in good agreement with numerical simulation based on the non-stationary theory of a gyrotron with a fixed Gaussian high-frequency field structure. Results and discussion. Resonance curves and synchronization bounds are built on the plane of parameters “amplitude – frequency of external signal”. The case where the gyrotron is in the hard excitation mode is considered, since the maximum efficiency is usually achieved in the hard excitation mode. In general, the results are in qualitative agreement with the picture described earlier for a simpler quasi-linear model of a oscillator with hard excitation, in the case of a sufficiently strong phase nonlinearity.


Author(s):  
Yi Wang ◽  
Honghua Wang ◽  
Jingwei Zhang ◽  
Chao Tan

Purpose This paper aims to establish a piecewise Maxwell stress analytical model of bearingless switched reluctance motor (BSRM) for the full rotor angular positions. The proposed model varies from the existing models, which are only applicable to the partial-overlapping positions of stator and rotor poles. By extending the applicable rotor angular positions, this model provides a basic analytical model for the multi-phase excitation control of BSRM. Design/methodology/approach The full rotor angular positions are classified into the partial-overlapping positions and the non-overlapping positions. At first, two different air gap subdividing methods are proposed, respectively, for the two-position ranges. Then, different integration paths are selected accordingly. Furthermore, two approximate methods are presented to calculate the average flux density of each air gap subdivision. Finally, considering the mutual coupling between the two perpendicular radial suspension forces, a piecewise Maxwell stress analytical model is derived for the full rotor angular positions of BSRM. Findings A piecewise Maxwell stress analytical model of BSRM is built for the full rotor angular positions, and applicable to the multi-phase excitation mode of BSRM. For the partial-overlapping positions and the non-overlapping positions, two sets of air gap subdividing methods, integration paths and approximate calculation methods of air gap flux densities are proposed, respectively. The accuracy and reliability of the proposed model are verified by the finite element method. Originality/value The piecewise Maxwell stress analytical model of BSRM for the full rotor angular positions is proposed for the first time. The novel air gap subdividing methods, integration paths, approximate calculation methods of air gap flux densities and the coupling between the two radial suspension forces are adopted to improve the modeling accuracy. As the applicable range of rotor angular position is extended, this model overcomes the limitation of the existing models only for single-phase excitation mode and contributes to the accurate control of BSRM multi-phase excitation mode.


Author(s):  
Л.В. АЛЕКСЕЙЧИК ◽  
Н.В. АНДРИЕВСКИЙ

Представлены результаты численного моделирования частотныххарактеристик квадратурного трехшлейфового моста (КШМ) L-диапазона, выполненного на основе симметричной полосковой линии с воздушным заполнением. Цель работы - установление допустимого уровня вносимых тепловых потерь полосковых линий (или других типов линий передачи), не оказывающих заметного влияния на рабочие характеристики КШМ, удовлетворяющие требуемым параметрам. Метод расчета основан на принципе декомпозиции электрической цепи КШМ на шесть симметричных 6-полюсников, три из которых соответствуют нечетной моде возбуждения КШМ, а три других - четной моде возбуждения КШМ. Алгебраическое суммирование матриц рассеяния указанных мод позволило получить частотные характеристики результирующей S-матрицы рассеяния КШМ. Нормирование S-матрицы к стандартному волновому сопротивлению 50 Ом выполнено с помощью вычисления собственных значений матриц рассеяния эквивалентных 4-полюсников КШМ. Моделирование проведено в среде LabVIEW. The paper presents the results of numerical simulation of the frequency characteristics of the L-range quadrature three-loop bridge (QLB), based on the symmetric striped line with air filling. The purpose of the study is to establish the permissible level of introduced thermal losses of strip lines (or other types of transmission lines) that do not significantly affect the performance characteristics of the QLB, satisfying the required parameters. The calculation method is based on the principle of decomposition of the QLB electric circuit into six symmetric 6-poles, three of which correspond to the odd excitation mode of the QLB, and the other three correspond to the even excitation mode of the QLB. Algebraic summation of the scattering matrices of these modes made it possible to obtain frequency characteristics of the resulting S-scattering matrix of the qLb. The normalization of the S-matrix to the standard wave resistance of 50 Ohms was carried out using the calculation of the eigenvalues of the scattering matrices of equivalent 4-poles of the QLB. The simulation was carried out in the LabVIEW environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chenglong You ◽  
Mingyuan Hong ◽  
Narayan Bhusal ◽  
Jinnan Chen ◽  
Mario A. Quiroz-Juárez ◽  
...  

AbstractFor almost two decades, researchers have observed the preservation of the quantum statistical properties of bosons in a large variety of plasmonic systems. In addition, the possibility of preserving nonclassical correlations in light-matter interactions mediated by scattering among photons and plasmons stimulated the idea of the conservation of quantum statistics in plasmonic systems. It has also been assumed that similar dynamics underlie the conservation of the quantum fluctuations that define the nature of light sources. So far, plasmonic experiments have been performed in nanoscale systems in which complex multiparticle interactions are restrained. Here, we demonstrate that the quantum statistics of multiparticle systems are not always preserved in plasmonic platforms and report the observation of their modification. Moreover, we show that optical near fields provide additional scattering paths that can induce complex multiparticle interactions. Remarkably, the resulting multiparticle dynamics can, in turn, lead to the modification of the excitation mode of plasmonic systems. These observations are validated through the quantum theory of optical coherence for single- and multi-mode plasmonic systems. Our findings unveil the possibility of using multiparticle scattering to perform exquisite control of quantum plasmonic systems.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1273
Author(s):  
Kouji Kashiwa

We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (μR=0) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at μR=0. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties.


Author(s):  
Tianyuan Zhou ◽  
Chen Hou ◽  
Le Zhang ◽  
Yuelong Ma ◽  
Jian Kang ◽  
...  

AbstractRealizing a high color rendering index (CRI) in Ce:LuAG transparent ceramics (TCs) with desired thermal stability is essential to their applications in white LEDs/LDs as color converters. In this study, based on the scheme of configuring the red component by Cr3+ doping, an efficient spectral regulation was realized in Ce,Cr:LuAG TCs. A unilateral shift phenomenon could be observed in both photoluminescence (PL) and photoluminescence excitation (PLE) spectra of TCs. By constructing TC-based white LED/LD devices in a remote excitation mode, luminescence properties of Ce,Cr:LuAG TCs were systematically investigated. The CRI values of Ce:LuAG TC based white LEDs could be increased by a magnitude of 46.2%. Particularly, by combining the as fabricated Ce,Cr:LuAG TCs with a 0.5 at% Ce:YAG TC, surprising CRI values of 88 and 85.5 were obtained in TC based white LEDs and LDs, respectively. Therefore, Ce,Cr:LuAG TC is a highly promising color convertor for high-power white LEDs/LDs applied in general lighting and displaying.


Author(s):  
Franziska Bößl ◽  
Tim P. Comyn ◽  
Peter I. Cowin ◽  
Francisco R. García-García ◽  
Ignacio Tudela

Sign in / Sign up

Export Citation Format

Share Document