Time-Related Changes in Neural Systems Underlying Attention and Arousal During the Performance of an Auditory Vigilance Task

1997 ◽  
Vol 9 (3) ◽  
pp. 392-408 ◽  
Author(s):  
Tomáš Paus ◽  
Robert J. Zatorre ◽  
Nina Hofle ◽  
Zografos Caramanos ◽  
Jean Gotman ◽  
...  

Vigilance behavior, or watch keeping, involves the focusing of attention on the detection of subtle changes in the environment that occur over a long period of time. We investigated the time course of changes in brain activity during the continuous performance of a 60-min auditory vigilance task. The task required the detection of an intensity drop that occurred in 5% of the auditory stimuli. Six 1-min samples of cerebral blood flow (CBF) and electroencephalographic (EEG) activity were obtained at l0-min intervals during the vigilance performance. Changes in CBF were measured by means of positron emission tomography (PET). Performance data (hits, false alarms, reaction time) were analyzed across six 10-min blocks. Eight healthy male volunteers participated in the study. During the 60-min test, the number of correct detections (hits) did not change, but both the reaction time and EEG activity in the theta (4 to 7 Hz) range progressively increased across testing. CBF in several subcortical structures (thalamus, substantia innominata, and putamen) and cortical areas (ventrolateral, dorsolateral, and orbital frontal cortex; parietal cortex; and temporal cortex) decreased as a function of time-on-task; changes in the cortical regions were limited to the right hemisphere. Blood flow also decreased in the temporalis muscles. At the same time, CBF increased in several visual cortical areas including the left and right fusiform gyri. Furthermore, the thalamic blood-flow response co-varied with that in the substantia innominata, the ponto-mesencephalic tegmentum, and the anterior cingulate cortex. The right ventrolateral-frontal blood-flow response covaried with that in the right parietal, orbitofrontal, and dorsolateral frontal cortex. 'Iko main conclusions are drawn from the obtained data. First, we suggest that the observed time-related changes in reaction time, EEG activity, and blood flow in the temporalis muscles are related to changes in the level of arousal (alertness) and that CBF changes in the thalamus-related neural circuitry represent a brain correlate of such changes. Second, we speculate that time-related CBF decreases in cortical regions of the right hemisphere underlie a shift from controlled to automatic attentional processing of the auditory stimuli.

2019 ◽  
Author(s):  
Candice T. Stanfield ◽  
Martin Wiener

AbstractPrevious evidence suggests different cortical areas naturally oscillate at distinct frequencies, reflecting tuning properties of each region. The concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to perturb cortical regions, resulting in an observed post-stimulation response that is maximal at the natural frequency of that region. However, little is known about the spatial extent of TMS-induced activation differences in cortical regions when comparing resting state (passive) versus active task performance. Here, we employed TMS-EEG to directly perturb three cortical areas in the right hemisphere while measuring the resultant changes in maximal evoked frequency in healthy human subjects during a resting state (N=12) and during an active sensorimotor task (N=12). Our results revealed that the brain engages a higher dominant frequency mode when actively engaged in a task, such that the frequency evoked during a task is consistently higher across cortical regions, regardless of the region stimulated. These findings suggest that a distinct characteristic of active performance versus resting state is a higher state of natural cortical frequencies.


1985 ◽  
Vol 53 (5) ◽  
pp. 1219-1243 ◽  
Author(s):  
P. E. Roland ◽  
L. Friberg

These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work in the form of operations on internal information, done by an awake subject. The rCBF was measured in 254 cortical regions in 11 subjects with the intracarotid 133Xe injection technique. In normal man, changes in the regional cortical metabolic rate of O2 leads to proportional changes in rCBF. One control study was taken with the subjects at rest. Then the rCBF was measured during three different simple algorithm tasks, each consisting of retrieval of a specific memory followed by a simple operation on the retrieved information. Once started, the information processing went on in the brain without any communication with the outside world. In 50-3 thinking, the subjects started with 50 and then, in their minds only, continuously subtracted 3 from the result. In jingle thinking the subjects internally jumped every second word in a nine-word circular jingle. In route-finding thinking the subjects imagined that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking. In the remaining parts of the prefrontal cortex there were multifocal increases of rCBF. The localizations and intensities of these rCBF increases depended on the type of internal operation occurring. The rCBF increased bilaterally in the angular cortex during 50-3 thinking. The rCBF increased in the right midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All rCBF increases extended over a few square centimeters of the cortex. The activation of the superior prefrontal cortex was attributed to the organization of thinking. The activation of the angular cortex in 50-3 thinking was attributed to the retrieval of the numerical memory and memory for subtractions. The activation of the right midtemporal cortex was attributed to the retrieval of the nonverbal auditory memory.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Author(s):  
Candice T. Stanfield ◽  
Martin Wiener

AbstractPrevious evidence suggests different cortical areas naturally oscillate at distinct frequencies, reflecting tuning properties of each region. The concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to perturb cortical regions, resulting in an observed post-stimulation response that is maximal at the natural frequency of that region. However, little is known about the spatial extent of TMS-induced activation differences in cortical regions when comparing resting state (passive) versus active task performance. Here, we employed TMS-EEG to directly perturb three cortical areas in the right hemisphere while measuring the resultant changes in maximal evoked frequency in healthy human subjects during a resting state (N=12) and during an active sensorimotor task (N=12). Our results revealed that the brain engages a higher dominant frequency mode when actively engaged in a task, such that the frequency evoked during a task is consistently higher across cortical regions, regardless of the region stimulated. These findings suggest that a distinct characteristic of active performance versus resting state is a higher state of natural cortical frequencies.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


2019 ◽  
Vol 9 (12) ◽  
pp. 363 ◽  
Author(s):  
Fares Al-Shargie ◽  
Usman Tariq ◽  
Omnia Hassanin ◽  
Hasan Mir ◽  
Fabio Babiloni ◽  
...  

In this paper, we present a method to quantify the coupling between brain regions under vigilance and enhanced mental states by utilizing partial directed coherence (PDC) and graph theory analysis (GTA). The vigilance state is induced using a modified version of stroop color-word task (SCWT) while the enhancement state is based on audio stimulation with a pure tone of 250 Hz. The audio stimulation was presented to the right and left ears simultaneously for one-hour while participants perform the SCWT. The quantification of mental states was performed by means of statistical analysis of indexes based on GTA, behavioral responses of time-on-task (TOT), and Brunel Mood Scale (BRMUS). The results show that PDC is very sensitive to vigilance decrement and shows that the brain connectivity network is significantly reduced with increasing TOT, p < 0.05. Meanwhile, during the enhanced state, the connectivity network maintains high connectivity as time passes and shows significant improvements compared to vigilance state. The audio stimulation enhances the connectivity network over the frontal and parietal regions and the right hemisphere. The increase in the connectivity network correlates with individual differences in the magnitude of the vigilance enhancement assessed by response time to stimuli. Our results provide evidence for enhancement of cognitive processing efficiency with audio stimulation. The BRMUS was used to evaluate the emotional states of vigilance task before and after using the audio stimulation. BRMUS factors, such as fatigue, depression, and anger, significantly decrease in the enhancement group compared to vigilance group. On the other hand, happy and calmness factors increased with audio stimulation, p < 0.05.


1980 ◽  
Vol 51 (1) ◽  
pp. 239-244 ◽  
Author(s):  
Hitoshi Honda

Inhibitory effects of S1 on the RT to S2 in double (visual-visual) stimulation situations were examined using 10 right-handed subjects, especially from the viewpoint of hemispheric input/output coupling. It was shown that the RT of the left hemisphere (right hand) to S2 after the projection of S1 into the right hemisphere was slower than the RTs under other conditions. The results were interpreted as showing an asymmetrical interhemispheric interfering effect in situations of double stimulation.


Neurology ◽  
2018 ◽  
Vol 90 (5) ◽  
pp. e396-e403 ◽  
Author(s):  
Garam Kim ◽  
Shahrooz Vahedi ◽  
Tamar Gefen ◽  
Sandra Weintraub ◽  
Eileen H. Bigio ◽  
...  

ObjectiveTo quantitatively examine the regional densities and hemispheric distribution of the 43-kDa transactive response DNA-binding protein (TDP-43) inclusions, neurons, and activated microglia in a left-handed patient with right hemisphere language dominance and logopenic-variant primary progressive aphasia (PPA).MethodsPhosphorylated TDP-43 inclusions, neurons, and activated microglia were visualized with immunohistochemical and histologic methods. Markers were quantified bilaterally with unbiased stereology in language- and memory-related cortical regions.ResultsClinical MRI indicated cortical atrophy in the right hemisphere, mostly in the temporal lobe. Significantly higher densities of TDP-43 inclusions were present in right language-related temporal regions compared to the left or to other right hemisphere regions. The memory-related entorhinal cortex (ERC) and language regions without significant atrophy showed no asymmetry. Activated microglia displayed extensive asymmetry (R > L). A substantial density of neurons remained in all areas and showed no hemispheric asymmetry. However, perikaryal size was significantly smaller in the right hemisphere across all regions except the ERC. To demonstrate the specificity of this finding, sizes of residual neurons were measured in a right-handed case with PPA and were found to be smaller in the language-dominant left hemisphere.ConclusionsThe distribution of TDP-43 inclusions and microglial activation in right temporal language regions showed concordance with anatomic distribution of cortical atrophy and clinical presentation. The results revealed no direct relationship between density of TDP-43 inclusions and activated microglia. Reduced size of the remaining neurons is likely to contribute to cortical atrophy detected by MRI. These findings support the conclusion that there is no obligatory relationship between logopenic PPA and Alzheimer pathology.


1994 ◽  
Vol 78 (3) ◽  
pp. 971-978 ◽  
Author(s):  
Robert Geheb ◽  
Keith E. Whitfield ◽  
Linda Brannon

The present study of gender differences in hemispheric processing involved identification of tachistoscopically presented images of varying complexity. A computerized tachistoscopic program was administered to 24 men and 34 women. Time to identify contour and detailed pictures presented to the left or right cerebral hemisphere was recorded. Mean reaction time for contour pictures was significantly faster than for detailed pictures, and mean reaction time to the right hemisphere was significantly faster than that to the left hemisphere. The mean reaction time for men to identify pictures exposed to the left hemisphere was significantly slower than that for exposure to the right hemisphere for women. The mean reaction time for both men and women to identify contour pictures exposed to the right hemisphere was significantly faster than the mean time to identify detailed pictures presented to the left hemisphere. The interaction of gender, hemisphere, and complexity was also significant in that mean reaction times for men to identify detailed pictures presented to the left hemisphere were slower than the times for women to identify contour pictures presented to the right hemisphere. The results are discussed in relation to theories about hemispheres, gender, and differences in picture features.


1983 ◽  
Vol 57 (3) ◽  
pp. 923-929 ◽  
Author(s):  
John L. Andreassi ◽  
Charles S. Rebert ◽  
Ferol F. Larsen

Reaction time and signal detection performance were measured during a 78-min. vigilance task. 12 right-handed male subjects served in two experimental sessions. Subjects focused on a central fixation point and responded to signals presented at unpredictable times in one of three locations: 2.5° to right of central fixation, central, and 2.5° to the left of center. Subjects decided whether to press a response key with either the left or right hand with each presentation. Over-all vigilance performance (signal detections and response time) was similar for left and right visual-field presentations. Evidence from reaction times indicated that responses controlled by the left hemisphere were faster to a verbal stimulus (T) while reactions controlled by the right hemisphere were faster to an apparent non-verbal stimulus, an inverted T.


Sign in / Sign up

Export Citation Format

Share Document