scholarly journals State-dependent differences in the frequency of TMS-evoked potentials between resting and active states

2019 ◽  
Author(s):  
Candice T. Stanfield ◽  
Martin Wiener

AbstractPrevious evidence suggests different cortical areas naturally oscillate at distinct frequencies, reflecting tuning properties of each region. The concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to perturb cortical regions, resulting in an observed post-stimulation response that is maximal at the natural frequency of that region. However, little is known about the spatial extent of TMS-induced activation differences in cortical regions when comparing resting state (passive) versus active task performance. Here, we employed TMS-EEG to directly perturb three cortical areas in the right hemisphere while measuring the resultant changes in maximal evoked frequency in healthy human subjects during a resting state (N=12) and during an active sensorimotor task (N=12). Our results revealed that the brain engages a higher dominant frequency mode when actively engaged in a task, such that the frequency evoked during a task is consistently higher across cortical regions, regardless of the region stimulated. These findings suggest that a distinct characteristic of active performance versus resting state is a higher state of natural cortical frequencies.

2019 ◽  
Author(s):  
Candice T. Stanfield ◽  
Martin Wiener

AbstractPrevious evidence suggests different cortical areas naturally oscillate at distinct frequencies, reflecting tuning properties of each region. The concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to perturb cortical regions, resulting in an observed post-stimulation response that is maximal at the natural frequency of that region. However, little is known about the spatial extent of TMS-induced activation differences in cortical regions when comparing resting state (passive) versus active task performance. Here, we employed TMS-EEG to directly perturb three cortical areas in the right hemisphere while measuring the resultant changes in maximal evoked frequency in healthy human subjects during a resting state (N=12) and during an active sensorimotor task (N=12). Our results revealed that the brain engages a higher dominant frequency mode when actively engaged in a task, such that the frequency evoked during a task is consistently higher across cortical regions, regardless of the region stimulated. These findings suggest that a distinct characteristic of active performance versus resting state is a higher state of natural cortical frequencies.


1997 ◽  
Vol 9 (3) ◽  
pp. 392-408 ◽  
Author(s):  
Tomáš Paus ◽  
Robert J. Zatorre ◽  
Nina Hofle ◽  
Zografos Caramanos ◽  
Jean Gotman ◽  
...  

Vigilance behavior, or watch keeping, involves the focusing of attention on the detection of subtle changes in the environment that occur over a long period of time. We investigated the time course of changes in brain activity during the continuous performance of a 60-min auditory vigilance task. The task required the detection of an intensity drop that occurred in 5% of the auditory stimuli. Six 1-min samples of cerebral blood flow (CBF) and electroencephalographic (EEG) activity were obtained at l0-min intervals during the vigilance performance. Changes in CBF were measured by means of positron emission tomography (PET). Performance data (hits, false alarms, reaction time) were analyzed across six 10-min blocks. Eight healthy male volunteers participated in the study. During the 60-min test, the number of correct detections (hits) did not change, but both the reaction time and EEG activity in the theta (4 to 7 Hz) range progressively increased across testing. CBF in several subcortical structures (thalamus, substantia innominata, and putamen) and cortical areas (ventrolateral, dorsolateral, and orbital frontal cortex; parietal cortex; and temporal cortex) decreased as a function of time-on-task; changes in the cortical regions were limited to the right hemisphere. Blood flow also decreased in the temporalis muscles. At the same time, CBF increased in several visual cortical areas including the left and right fusiform gyri. Furthermore, the thalamic blood-flow response co-varied with that in the substantia innominata, the ponto-mesencephalic tegmentum, and the anterior cingulate cortex. The right ventrolateral-frontal blood-flow response covaried with that in the right parietal, orbitofrontal, and dorsolateral frontal cortex. 'Iko main conclusions are drawn from the obtained data. First, we suggest that the observed time-related changes in reaction time, EEG activity, and blood flow in the temporalis muscles are related to changes in the level of arousal (alertness) and that CBF changes in the thalamus-related neural circuitry represent a brain correlate of such changes. Second, we speculate that time-related CBF decreases in cortical regions of the right hemisphere underlie a shift from controlled to automatic attentional processing of the auditory stimuli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jelena Trajkovic ◽  
Francesco Di Gregorio ◽  
Francesca Ferri ◽  
Chiara Marzi ◽  
Stefano Diciotti ◽  
...  

AbstractSchizophrenia is among the most debilitating neuropsychiatric disorders. However, clear neurophysiological markers that would identify at-risk individuals represent still an unknown. The aim of this study was to investigate possible alterations in the resting alpha oscillatory activity in normal population high on schizotypy trait, a physiological condition known to be severely altered in patients with schizophrenia. Direct comparison of resting-state EEG oscillatory activity between Low and High Schizotypy Group (LSG and HSG) has revealed a clear right hemisphere alteration in alpha activity of the HSG. Specifically, HSG shows a significant slowing down of right hemisphere posterior alpha frequency and an altered distribution of its amplitude, with a tendency towards a reduction in the right hemisphere in comparison to LSG. Furthermore, altered and reduced connectivity in the right fronto-parietal network within the alpha range was found in the HSG. Crucially, a trained pattern classifier based on these indices of alpha activity was able to successfully differentiate HSG from LSG on tested participants further confirming the specific importance of right hemispheric alpha activity and intrahemispheric functional connectivity. By combining alpha activity and connectivity measures with a machine learning predictive model optimized in a nested stratified cross-validation loop, current research offers a promising clinical tool able to identify individuals at-risk of developing psychosis (i.e., high schizotypy individuals).


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


2021 ◽  
Author(s):  
Victor Oswald ◽  
Younes Zerouali ◽  
Aubrée Boulet-Craig ◽  
Maja Krajinovic ◽  
Caroline Laverdière ◽  
...  

Abstract Verbal fluency (VF) is a heterogeneous test that requires executive functions as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VFtest, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statisticsin the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bandsin the left inferior frontal gyrus likely associated with phonological processinginvolved in verbal fluency.


Author(s):  
Raymond Fox

‘‘Know thyself,’’ advises Socrates. ‘‘To thine own self be true,’’ recommends Shakespeare. Being cognizant of your attributes, limitations, and style heightens your ability to draw selectively upon your own resources and fuels students’ strengths. It kindles expanding levels of awareness, competence, and confidence in all of you. Awareness of self as person, practitioner, and as teacher is critical. Competencies distinguishing the best from the worst in the helping professions have little to do with theory and technical acumen. They have everything to do with emotional and social know-how. Such know-how is cultivated though an intensive reflective process, the cornerstone of which exceeds abstract theoretical or technical knowledge. Experience and tacit knowledge upon which you rely everyday, almost automatically, when raised to the conscious level, is even more important. As a teacher, reflection goes well beyond improving performance in one particular course. It concentrates as well on consideration about your teaching in general and awareness of your own reflective processes. Practitioners, as well as teachers, include understanding, as contrasted with explanation, as essential to their work. Understanding entails the discipline of attending, noticing, and appreciating others as human subjects. It is very different from explaining and can emerge only gradually when it is tended and nurtured by reflection. Understanding transcends translating or reducing experience to interpretation. As you teach, engage the left hemisphere, chiefly responsible for explanation of data, in tandem with the right hemisphere, chiefly responsible for overall representation, to engender context-rich understanding. All this is not to say that practitioners and teachers are not scientists and do not think critically, but rather that their unique stance concentrates on their heart as well as their head. Talented practitioners think critically and systematically about client needs, practice tasks, and service outcomes. They possess the ability to incorporate knowledge and skills into their work. That is, they understand client behaviors and concerns, the forces and factors that affect clients’ lives, and are able to select strategies and techniques appropriate to their clients’ conditions.


Neurology ◽  
2018 ◽  
Vol 90 (5) ◽  
pp. e396-e403 ◽  
Author(s):  
Garam Kim ◽  
Shahrooz Vahedi ◽  
Tamar Gefen ◽  
Sandra Weintraub ◽  
Eileen H. Bigio ◽  
...  

ObjectiveTo quantitatively examine the regional densities and hemispheric distribution of the 43-kDa transactive response DNA-binding protein (TDP-43) inclusions, neurons, and activated microglia in a left-handed patient with right hemisphere language dominance and logopenic-variant primary progressive aphasia (PPA).MethodsPhosphorylated TDP-43 inclusions, neurons, and activated microglia were visualized with immunohistochemical and histologic methods. Markers were quantified bilaterally with unbiased stereology in language- and memory-related cortical regions.ResultsClinical MRI indicated cortical atrophy in the right hemisphere, mostly in the temporal lobe. Significantly higher densities of TDP-43 inclusions were present in right language-related temporal regions compared to the left or to other right hemisphere regions. The memory-related entorhinal cortex (ERC) and language regions without significant atrophy showed no asymmetry. Activated microglia displayed extensive asymmetry (R > L). A substantial density of neurons remained in all areas and showed no hemispheric asymmetry. However, perikaryal size was significantly smaller in the right hemisphere across all regions except the ERC. To demonstrate the specificity of this finding, sizes of residual neurons were measured in a right-handed case with PPA and were found to be smaller in the language-dominant left hemisphere.ConclusionsThe distribution of TDP-43 inclusions and microglial activation in right temporal language regions showed concordance with anatomic distribution of cortical atrophy and clinical presentation. The results revealed no direct relationship between density of TDP-43 inclusions and activated microglia. Reduced size of the remaining neurons is likely to contribute to cortical atrophy detected by MRI. These findings support the conclusion that there is no obligatory relationship between logopenic PPA and Alzheimer pathology.


2001 ◽  
Vol 86 (1) ◽  
pp. 113-122 ◽  
Author(s):  
O. Bergamin ◽  
D. Straumann

When a human subject is oscillated about the nasooccipital axis and fixes upon targets along the horizontal head-fixed meridian, angular eye velocity includes a vertical component that increases with the horizontal eccentricity of the line-of-sight. This vertical eye movement component is necessary to prevent retinal slip. We asked whether fixation on a near head-fixed target during the same torsional vestibular stimulation would lead to differences of vertical eye movements between the right and the left eye, as the directions of the two lines-of-sight are not parallel during convergence. Healthy human subjects ( n = 6) were oscillated (0.3 Hz, ±30°) about the nasooccipital axis on a three-dimensional motor-driven turntable. Binocular movements were recorded using the dual search coil technique. A head-fixed laser dot was presented 1.4 m (far head-fixed target) or 0.25 m (near head-fixed target) in front of the right eye. We found highly significant ( P < 0.01) correlations (R binocular = 0.8, monocular = 0.59) between the convergence angle and the difference of the vertical eye velocity between the two eyes. The slope of the fitted linear regression between the two parameters ( s = 0.45) was close to the theoretical slope necessary to prevent vertical retinal slippage (predicted s = 0.5). Covering the left eye did not significantly change the slope ( s = 0.52). In addition, there was a marked gain reduction (∼35%) of the torsional vestibuloocular reflex (VOR) between viewing the far and the near targets, confirming earlier results by others. There was no difference in torsional gain reduction between the two eyes. Lenses of +3 dpt positioned in front of both eyes to decrease the amount of accommodation did not further change the gain of the torsional VOR. In conclusion, ocular convergence on a near head-fixed target during torsional vestibular stimulation leads to deviations in vertical angular velocity between the two eyes necessary to prevent vertical double vision. The vertical deviation velocity is mainly linked to the amount of convergence, since it also occurs during monocular viewing of the near head-fixed target. This suggests that convergence during vestibular stimulation automatically leads to an alignment of binocular rotation axes with the visual axes independent of retinal slip.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2106
Author(s):  
Yair Pinto ◽  
Edward H.F. de Haan ◽  
Maria-Chiara Villa ◽  
Sabrina Siliquini ◽  
Gabriele Polonara ◽  
...  

One of the most fundamental, and most studied, human cognitive functions is working memory. Yet, it is currently unknown how working memory is unified. In other words, why does a healthy human brain have one integrated capacity of working memory, rather than one capacity per visual hemifield, for instance. Thus, healthy subjects can memorize roughly as many items, regardless of whether all items are presented in one hemifield, rather than throughout two visual hemifields. In this current research, we investigated two patients in whom either most, or the entire, corpus callosum has been cut to alleviate otherwise untreatable epilepsy. Crucially, in both patients the anterior parts connecting the frontal and most of the parietal cortices, are entirely removed. This is essential, since it is often posited that working memory resides in these areas of the cortex. We found that despite the lack of direct connections between the frontal cortices in these patients, working memory capacity is similar regardless of whether stimuli are all presented in one visual hemifield or across two visual hemifields. This indicates that in the absence of the anterior parts of the corpus callosum working memory remains unified. Moreover, it is important to note that memory performance was not similar across visual fields. In fact, capacity was higher when items appeared in the left visual hemifield than when they appeared in the right visual hemifield. Visual information in the left hemifield is processed by the right hemisphere and vice versa. Therefore, this indicates that visual working memory is not symmetric, with the right hemisphere having a superior visual working memory. Nonetheless, a (subcortical) bottleneck apparently causes visual working memory to be integrated, such that capacity does not increase when items are presented in two, rather than one, visual hemifield.


2016 ◽  
Vol 28 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Lars Strother ◽  
Alexandra M. Coros ◽  
Tutis Vilis

Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex—especially those that evolved to support the visual processing of faces—are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.


Sign in / Sign up

Export Citation Format

Share Document