scholarly journals Dynamic Oscillatory Processes Governing Cued Orienting and Allocation of Auditory Attention

2013 ◽  
Vol 25 (11) ◽  
pp. 1926-1943 ◽  
Author(s):  
Jyrki Ahveninen ◽  
Samantha Huang ◽  
John W. Belliveau ◽  
Wei-Tang Chang ◽  
Matti Hämäläinen

In everyday listening situations, we need to constantly switch between alternative sound sources and engage attention according to cues that match our goals and expectations. The exact neuronal bases of these processes are poorly understood. We investigated oscillatory brain networks controlling auditory attention using cortically constrained fMRI-weighted magnetoencephalography/EEG source estimates. During consecutive trials, participants were instructed to shift attention based on a cue, presented in the ear where a target was likely to follow. To promote audiospatial attention effects, the targets were embedded in streams of dichotically presented standard tones. Occasionally, an unexpected novel sound occurred opposite to the cued ear to trigger involuntary orienting. According to our cortical power correlation analyses, increased frontoparietal/temporal 30–100 Hz gamma activity at 200–1400 msec after cued orienting predicted fast and accurate discrimination of subsequent targets. This sustained correlation effect, possibly reflecting voluntary engagement of attention after the initial cue-driven orienting, spread from the TPJ, anterior insula, and inferior frontal cortices to the right FEFs. Engagement of attention to one ear resulted in a significantly stronger increase of 7.5–15 Hz alpha in the ipsilateral than contralateral parieto-occipital cortices 200–600 msec after the cue onset, possibly reflecting cross-modal modulation of the dorsal visual pathway during audiospatial attention. Comparisons of cortical power patterns also revealed significant increases of sustained right medial frontal cortex theta power, right dorsolateral pFC and anterior insula/inferior frontal cortex beta power, and medial parietal cortex and posterior cingulate cortex gamma activity after cued versus novelty-triggered orienting (600–1400 msec). Our results reveal sustained oscillatory patterns associated with voluntary engagement of auditory spatial attention, with the frontoparietal and temporal gamma increases being best predictors of subsequent behavioral performance.

2010 ◽  
Vol 22 (12) ◽  
pp. 2790-2803 ◽  
Author(s):  
Sara M. Levens ◽  
Elizabeth A. Phelps

Previous research has shown that emotional information aids conflict resolution in working memory [WM; Levens, S. M., & Phelps, E. A. Emotion processing effects on interference resolution in working memory. Journal of Emotion, 8, 267–280, 2008]. Using a recency-probes WM paradigm, it was found that positive and negative emotional stimuli reduced the amount of interference created when information that was once relevant conflicted with currently relevant information. To explore the neural mechanisms behind these facilitation effects, an event-related fMRI version of the recency-probes task was conducted using neutral and arousing positive and negative words as stimuli. Results replicate previous findings showing that the left and right inferior frontal gyrus (IFG) is involved in the interference resolution of neutral information and reveal that the IFG is involved in the interference resolution of emotional information as well. In addition, ROIs in the right and left anterior insula and in the right orbital frontal cortex (OFC) were identified that appear to underlie emotional interference resolution in WM. We conclude that the IFG underlies neutral and emotional interference resolution, and that additional regions of the anterior insula and OFC may contribute to the facilitation of interference resolution for emotional information. These findings clarify the role of the insula and OFC in affective and executive processing, specifically in WM conflict resolution.


2018 ◽  
Vol 30 (2) ◽  
pp. 174-187 ◽  
Author(s):  
Erika Nyhus

Evidence from fMRI has consistently located a widespread network of frontal, parietal, and temporal lobe regions during episodic retrieval. However, the temporal limitations of the fMRI methodology have made it difficult to assess the transient network dynamics by which these distributed regions coordinate activity. Recent evidence suggests that beta oscillations (17–20 Hz) are important for top–down control for memory suppression. However, the spatial limitations of the EEG methodology make it difficult to assess the relationship between these oscillatory signals and the distributed networks identified with fMRI. This study used simultaneous EEG/fMRI to identify networks related to beta oscillations during episodic retrieval. Participants studied adjectives and either imagined a scene (Place Task) or judged its pleasantness (Pleasant Task). During the recognition test, participants decided which task was performed with each word (“Old Place Task” or “Old Pleasant Task”) or “New.” EEG results revealed that posterior beta power was greater for new than old words. fMRI results revealed activity in a frontal, parietal network that was greater for old than new words, consistent with prior studies. Although overall beta power increases correlated with decreased activity within a predominantly parietal network, within the right dorsolateral and ventrolateral pFC, beta power correlated with BOLD activity more under conditions requiring more cognitive control and EEG/fMRI effects in the right frontal cortex correlated with BOLD activity in a frontoparietal network. Therefore, using simultaneous EEG and fMRI, the present results suggest that beta oscillations are related to postretrieval control operations in the right frontal cortex and act within a broader postretrieval control network.


2010 ◽  
Vol 22 (3) ◽  
pp. 118-126 ◽  
Author(s):  
Shuang Ge Sui ◽  
Ming Xiang Wu ◽  
Mark E. King ◽  
Yan Zhang ◽  
Li Ling ◽  
...  

Sui SG, Wu MX, King ME, Zhang Y, Ling L, Xu JM, Weng XC, Duan L, Shan BC, Li LJ. Abnormal grey matter in victims of rape with PTSD in Mainland China: a voxel-based morphometry study.Objective:This study examined changes in brain grey matter in victims of rape (VoR) with and without post-traumatic stress disorder (PTSD). Previous research has focused on PTSD caused by various traumatic events, such as war and disaster, among others. Although considerable research has focused on rape-related PTSD, limited studies have been carried out in the context of Mainland China.Methods:The study included 11 VoR with PTSD, 8 VoR without PTSD and 12 healthy comparison (HC) subjects. We used voxel-based morphometry to explore changes in brain grey-matter density (GMD) by applying statistical parametric mapping to high-resolution magnetic resonance images.Results:Compared with HC, VoR with PTSD showed significant GMD reductions in the bilateral medial frontal cortex, left middle frontal cortex, middle temporal gyrus and fusiform cortex and significant GMD increases in the right posterior cingulate cortex, postcentral cortex, bilateral precentral cortex and inferior parietal lobule. Compared to VoR without PTSD, VoR with PTSD showed significant GMD reductions in the right uncus, left middle temporal gyrus, and the fusiform cortex, and increases in the left precentral cortex, inferior parietal lobule and right post-central cortex.Conclusion:The findings of abnormal GMD in VoR with PTSD support the hypothesis that PTSD is associated with widespread anatomical changes in the brain. The medial frontal cortex, precentral cortex, posterior cingulate cortex, post-central cortex and inferior parietal lobule may play important roles in the neuropathology of PTSD.


2018 ◽  
Vol 31 (02) ◽  
pp. 557-571 ◽  
Author(s):  
Delin Sun ◽  
Courtney C. Haswell ◽  
Rajendra A. Morey ◽  
Michael D. De Bellis

AbstractChild maltreatment is a major cause of pediatric posttraumatic stress disorder (PTSD). Previous studies have not investigated potential differences in network architecture in maltreated youth with PTSD and those resilient to PTSD. High-resolution magnetic resonance imaging brain scans at 3 T were completed in maltreated youth with PTSD (n = 31), without PTSD (n = 32), and nonmaltreated controls (n = 57). Structural covariance network architecture was derived from between-subject intraregional correlations in measures of cortical thickness in 148 cortical regions (nodes). Interregional positive partial correlations controlling for demographic variables were assessed, and those correlations that exceeded specified thresholds constituted connections in cortical brain networks. Four measures of network centrality characterized topology, and the importance of cortical regions (nodes) within the network architecture were calculated for each group. Permutation testing and principle component analysis method were employed to calculate between-group differences. Principle component analysis is a methodological improvement to methods used in previous brain structural covariance network studies. Differences in centrality were observed between groups. Larger centrality was found in maltreated youth with PTSD in the right posterior cingulate cortex; smaller centrality was detected in the right inferior frontal cortex compared to youth resilient to PTSD and controls, demonstrating network characteristics unique to pediatric maltreatment-related PTSD. Larger centrality was detected in right frontal pole in maltreated youth resilient to PTSD compared to youth with PTSD and controls, demonstrating structural covariance network differences in youth resilience to PTSD following maltreatment. Smaller centrality was found in the left posterior cingulate cortex and in the right inferior frontal cortex in maltreated youth compared to controls, demonstrating attributes of structural covariance network topology that is unique to experiencing maltreatment. This work is the first to identify cortical thickness-based structural covariance network differences between maltreated youth with and without PTSD. We demonstrated network differences in both networks unique to maltreated youth with PTSD and those resilient to PTSD. The networks identified are important for the successful attainment of age-appropriate social cognition, attention, emotional processing, and inhibitory control. Our findings in maltreated youth with PTSD versus those without PTSD suggest vulnerability mechanisms for developing PTSD.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Drozdstoy Stoyanov ◽  
Katrin Aryutova ◽  
Sevdalina Kandilarova ◽  
Rositsa Paunova ◽  
Zlatoslav Arabadzhiev ◽  
...  

We constructed a novel design integrating the administration of a clinical self-assessment scale with simultaneous acquisition of functional Magnetic Resonance Imaging (fMRI), aiming at cross-validation between psychopathology evaluation and neuroimaging techniques. We hypothesized that areas demonstrating differential activation in two groups of patients (the first group exhibiting paranoid delusions in the context of paranoid schizophrenia—SCH—and second group with a depressive episode in the context of major depressive disorder or bipolar disorder—DEP) will have distinct connectivity patterns and structural differences. Fifty-one patients with SCH (n = 25) or DEP (n = 26) were scanned with three different MRI sequences: a structural and two functional sequences—resting-state and task-related fMRI (the stimuli represent items from a paranoid-depressive self-evaluation scale). While no significant differences were found in gray matter volumes, we were able to discriminate between the two clinical entities by identifying two significant clusters of activations in the SCH group—the left Precuneus (PreCu) extending to the left Posterior Cingulate Cortex (PCC) and the right Angular Gyrus (AG). Additionally, the effective connectivity of the middle frontal gyrus (MFG), a part of the Dorsolateral Prefrontal Cortex (DLPFC) to the Anterior Insula (AI), demonstrated a significant difference between the two groups with inhibitory connection demonstrated only in SCH. The observed activations of PreCu, PCC, and AG (involved in the Default Mode Network DMN) might be indirect evidence of the inhibitory connection from the DLPFC to AI, interfering with the balancing function of the insula as the dynamic switch in the DMN. The findings of our current study might suggest that the connectivity from DLPFC to the anterior insula can be interpreted as evidence for the presence of an aberrant network that leads to behavioral abnormalities, the manifestation of which depends on the direction of influence. The reduced effective connectivity from the AI to the DLPFC is manifested as depressive symptoms, and the inhibitory effect from the DLPFC to the AI is reflected in the paranoid symptoms of schizophrenia.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kanan Hirano ◽  
Kentaro Oba ◽  
Toshiki Saito ◽  
Shohei Yamazaki ◽  
Ryuta Kawashima ◽  
...  

Abstract Facing one’s own death and managing the fear of death are important existential issues, particularly in older populations. Although recent functional magnetic resonance imaging (fMRI) studies have investigated brain responses to death-related stimuli, none has examined whether this brain activation was specific to one’s own death or how it was related to dispositional fear of death. In this study, during fMRI, 34 elderly participants (aged, 60–72 years) were presented with either death-related or death-unrelated negative words and asked to evaluate the relevance of these words to the “self” or the “other.” The results showed that only the left supplementary motor area (SMA) was selectively activated during self-relevant judgments of death-related words. Regression analyses of the effect of fear of death on brain activation during death-related thoughts identified a significant negative linear correlation in the right supramarginal gyrus (SMG) and an inverted-U-shaped correlation in the posterior cingulate cortex (PCC) only during self-relevant judgments. Our results suggest potential involvement of the SMA in the existential aspect of thoughts of death. The distinct fear-of-death-dependent responses in the SMG and PCC may reflect fear-associated distancing of the physical self and the processing of death-related thoughts as a self-relevant future agenda, respectively.


2016 ◽  
Vol 124 (4) ◽  
pp. 766-778 ◽  
Author(s):  
Catherine Elizabeth Warnaby ◽  
Marta Seretny ◽  
Roísín Ní Mhuircheartaigh ◽  
Richard Rogers ◽  
Saad Jbabdi ◽  
...  

Abstract Background It has been postulated that a small cortical region could be responsible for the loss of behavioral responsiveness (LOBR) during general anesthesia. The authors hypothesize that any brain region demonstrating reduced activation to multisensory external stimuli around LOBR represents a key cortical gate underlying this transition. Furthermore, the authors hypothesize that this localized suppression is associated with breakdown in frontoparietal communication. Methods During both simultaneous electroencephalography and functional magnetic resonance imaging (FMRI) and electroencephalography data acquisition, 15 healthy volunteers experienced an ultraslow induction with propofol anesthesia while a paradigm of multisensory stimulation (i.e., auditory tones, words, and noxious pain stimuli) was presented. The authors performed separate analyses to identify changes in (1) stimulus-evoked activity, (2) functional connectivity, and (3) frontoparietal synchrony associated with LOBR. Results By using an FMRI conjunction analysis, the authors demonstrated that stimulus-evoked activity was suppressed in the right dorsal anterior insula cortex (dAIC) to all sensory modalities around LOBR. Furthermore, the authors found that the dAIC had reduced functional connectivity with the frontoparietal regions, specifically the dorsolateral prefrontal cortex and inferior parietal lobule, after LOBR. Finally, reductions in the electroencephalography power synchrony between electrodes located in these frontoparietal regions were observed in the same subjects after LOBR. Conclusions The authors conclude that the dAIC is a potential cortical gate responsible for LOBR. Suppression of dAIC activity around LOBR was associated with disruption in the frontoparietal networks that was measurable using both electroencephalography synchrony and FMRI connectivity analyses.


Neuroscience ◽  
2009 ◽  
Vol 163 (4) ◽  
pp. 1102-1108 ◽  
Author(s):  
J. Peters ◽  
M. Dauvermann ◽  
C. Mette ◽  
P. Platen ◽  
J. Franke ◽  
...  

2018 ◽  
Vol 33 (3) ◽  
pp. 335-346 ◽  
Author(s):  
A Correas ◽  
E López-Caneda ◽  
L Beaton ◽  
S Rodríguez Holguín ◽  
LM García-Moreno ◽  
...  

Background: The prevalence of binge drinking has risen in recent years. It is associated with a range of neurocognitive deficits among adolescents and young emerging adults who are especially vulnerable to alcohol use. Attention is an essential dimension of executive functioning and attentional disturbances may be associated with hazardous drinking. The aim of the study was to examine the oscillatory neural dynamics of attentional control during visual target detection in emerging young adults as a function of binge drinking. Method: In total, 51 first-year university students (18 ± 0.6 years) were assigned to light drinking ( n = 26), and binge drinking ( n = 25) groups based on their alcohol consumption patterns. A high-density magnetoencephalography signal was combined with structural magnetic resonance imaging in an anatomically constrained magnetoencephalography model to estimate event-related source power in a theta (4–7 Hz) frequency band. Phase-locked co-oscillations were further estimated between the principally activated regions during task performance. Results: Overall, the greatest event-related theta power was elicited by targets in the right inferior frontal cortex and it correlated with performance accuracy and selective attention scores. Binge drinkers exhibited lower theta power and dysregulated oscillatory synchrony to targets in the right inferior frontal cortex, which correlated with higher levels of alcohol consumption. Conclusions: These results confirm that a highly interactive network in the right inferior frontal cortex subserves attentional control, revealing the importance of theta oscillations and neural synchrony for attentional capture and contextual maintenance. Attenuation of theta power and synchronous interactions in binge drinkers may indicate early stages of suboptimal integrative processing in young, highly functioning binge drinkers.


Sign in / Sign up

Export Citation Format

Share Document