scholarly journals Dorsal Anterior Cingulate, Medial Superior Frontal Cortex, and Anterior Insula Show Performance Reporting-Related Late Task Control Signals

2016 ◽  
pp. bhw053 ◽  
Author(s):  
Maital Neta ◽  
Steven M. Nelson ◽  
Steven E. Petersen
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Li ◽  
Jianhao Yan ◽  
Hua Wen ◽  
Jinzhi Lin ◽  
Lianbao Liang ◽  
...  

AbstractNeuroimaging studies have documented brain structural alterations induced by chronic pain, particularly in gray matter volume. However, the effects of trigeminal neuralgia (TN), a severe paroxysmal pain disorder, on cortical morphology are not yet known. In this study, we recruited 30 TN patients and 30 age-, and gender-matched healthy controls (HCs). Using Computational Anatomy Toolbox (CAT12), we calculated and compared group differences in cortical thickness, gyrification, and sulcal depth with two-sample t tests (p < 0.05, multiple comparison corrected). Relationships between altered cortical characteristics and pain intensity were investigated with correlation analysis. Compared to HCs, TN patients exhibited significantly decreased cortical thickness in the left inferior frontal, and left medial orbitofrontal cortex; decreased gyrification in the left superior frontal cortex; and decreased sulcal depth in the bilateral superior frontal (extending to anterior cingulate) cortex. In addition, we found significantly negative correlations between the mean cortical thickness in left medial orbitofrontal cortex and pain intensity, and between the mean gyrification in left superior frontal cortex and pain intensity. Chronic pain may be associated with abnormal cortical thickness, gyrification and sulcal depth in trigeminal neuralgia. These morphological changes might contribute to understand the underlying neurobiological mechanism of trigeminal neuralgia.


2019 ◽  
Vol 23 (3) ◽  
pp. 135-145
Author(s):  
Shubao Chen ◽  
Shucai Huang ◽  
Cheng Yang ◽  
Weifu Cai ◽  
Hongxian Chen ◽  
...  

Abstract Background Stimulant use and sexual behaviors have been linked in behavioral and epidemiological studies. Although methamphetamine-related neurofunctional differences have been investigated, few studies have examined neural responses to drug and sexual cues with respect to shorter or longer term methamphetamine abstinence in individuals with methamphetamine dependence. Methods Forty-nine men with shorter term methamphetamine abstinence, 50 men with longer term methamphetamine abstinence, and 47 non–drug-using healthy comparison men completed a functional magnetic resonance imaging cue-reactivity task consisting of methamphetamine, sexual, and neutral visual cues. Results Region-of-interest analyses revealed greater methamphetamine cue–related activation in shorter term methamphetamine abstinence and longer term methamphetamine abstinence individuals relative to healthy comparison men in the ventromedial prefrontal cortex. A significant interaction of group and condition in the anterior insula was found. Relative to healthy comparison participants, both shorter term methamphetamine abstinence and longer term methamphetamine abstinence groups displayed greater sexual cue–related anterior insula activation relative to methamphetamine cues and neutral cues, but there were no differences between shorter term methamphetamine abstinence and longer term methamphetamine abstinence groups in anterior insula responses. Subsequent whole-brain analyses indicated a group-by-condition interaction with longer term methamphetamine abstinence participants showing greater sexual-related activation in the left superior frontal cortex relative to healthy comparison men. Shorter term methamphetamine abstinence participants showed greater superior frontal cortex activation to sexual relative to neutral cues, and longer term methamphetamine abstinence participants showed greater superior frontal cortex activation to sexual relative to neutral and methamphetamine cues. Conclusions The findings suggest that abstinence from methamphetamine may alter how individuals respond to drug and sexual cues and thus may influence drug use and sexual behaviors. Given the use of methamphetamine for sexual purposes and responses to natural vs drug rewards for addiction recovery, the findings may have particular clinical relevance.


2021 ◽  
Author(s):  
Timothy P. Morris ◽  
Aaron Kucyi ◽  
Sheeba Arnold Anteraper ◽  
Maiya Rachel Geddes ◽  
Alfonso Nieto-Castañon ◽  
...  

AbstractInformation about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tatiana Lau ◽  
Samuel J Gershman ◽  
Mina Cikara

Humans form social coalitions in every society, yet we know little about how we learn and represent social group boundaries. Here we derive predictions from a computational model of latent structure learning to move beyond explicit category labels and interpersonal, or dyadic, similarity as the sole inputs to social group representations. Using a model-based analysis of functional neuroimaging data, we find that separate areas correlate with dyadic similarity and latent structure learning. Trial-by-trial estimates of ‘allyship’ based on dyadic similarity between participants and each agent recruited medial prefrontal cortex/pregenual anterior cingulate (pgACC). Latent social group structure-based allyship estimates, in contrast, recruited right anterior insula (rAI). Variability in the brain signal from rAI improved prediction of variability in ally-choice behavior, whereas variability from the pgACC did not. These results provide novel insights into the psychological and neural mechanisms by which people learn to distinguish ‘us’ from ‘them.’


2019 ◽  
Vol 46 (3) ◽  
pp. 690-698
Author(s):  
Cassidy L Moody ◽  
Adam J Funk ◽  
Emily Devine ◽  
Ryan C Devore Homan ◽  
Detlev Boison ◽  
...  

Abstract The adenosine hypothesis of schizophrenia posits that reduced availability of the neuromodulator adenosine contributes to dysregulation of dopamine and glutamate transmission and the symptoms associated with schizophrenia. It has been proposed that increased expression of the enzyme adenosine kinase (ADK) may drive hypofunction of the adenosine system. While animal models of ADK overexpression support such a role for altered ADK, the expression of ADK in schizophrenia has yet to be examined. In this study, we assayed ADK gene and protein expression in frontocortical tissue from schizophrenia subjects. In the dorsolateral prefrontal cortex (DLPFC), ADK-long and -short splice variant expression was not significantly altered in schizophrenia compared to controls. There was also no significant difference in ADK splice variant expression in the frontal cortex of rats treated chronically with haloperidol-decanoate, in a study to identify the effect of antipsychotics on ADK gene expression. ADK protein expression was not significantly altered in the DLPFC or anterior cingulate cortex (ACC). There was no significant effect of antipsychotic medication on ADK protein expression in the DLPFC or ACC. Overall, our results suggest that increased ADK expression does not contribute to hypofunction of the adenosine system in schizophrenia and that alternative mechanisms are involved in dysregulation of this system in schizophrenia.


2020 ◽  
pp. 089198872096425
Author(s):  
Rakshathi Basavaraju ◽  
Xinyang Feng ◽  
Jeanelle France ◽  
Edward D. Huey ◽  
Frank A. Provenzano

Objectives: To understand the differential neuroanatomical substrates underlying apathy and depression in Frontotemporal dementia (FTD). Methods: T1-MRIs and clinical data of patients with behavioral and aphasic variants of FTD were obtained from an open database. Cortical thickness was derived, its association with apathy severity and difference between the depressed and not depressed were examined with appropriate covariates. Results: Apathy severity was significantly associated with cortical thinning of the lateral parts of the right sided frontal, temporal and parietal lobes. The right sided orbitofrontal, parsorbitalis and rostral anterior cingulate cortex were thicker in depressed compared to patients not depressed. Conclusions: Greater thickness of right sided ventromedial and inferior frontal cortex in depression compared to patients without depression suggests a possible requisite of gray matter in this particular area for the manifestation of depression in FTD. This study demonstrates a method for deriving neuroanatomical patterns across non-harmonized neuroimaging data in a neurodegenerative disease.


2012 ◽  
Vol 42 (10) ◽  
pp. 2071-2081 ◽  
Author(s):  
C. G. Davey ◽  
B. J. Harrison ◽  
M. Yücel ◽  
N. B. Allen

BackgroundDepression has been associated with functional alterations in several areas of the cingulate cortex. In this study we have taken a systematic approach to examining how alterations in functional connectivity vary across the functionally diverse subregions of the rostral cingulate cortex.MethodEighteen patients with major depressive disorder, aged 15 to 24 years, were matched with 20 healthy control participants. Using resting-state functional connectivity magnetic resonance imaging (fcMRI), we systematically investigated the functional connectivity of four subregions of the rostral cingulate cortex. Voxelwise statistical maps of each subregion's connectivity with other brain areas were compared between the patient and control groups.ResultsThe depressed participants showed altered patterns of connectivity with ventral cingulate subregions. They showed increased connectivity between subgenual anterior cingulate cortex (ACC) and dorsomedial frontal cortex, with connectivity strength showing positive correlation with illness severity. Depressed participants also showed increased connectivity between pregenual ACC and left dorsolateral frontal cortex, and decreased connectivity between pregenual ACC and the caudate nucleus bilaterally.ConclusionsThe results reinforce the importance of subgenual ACC for depression, and show a close link between brain regions that support self-related processes and affective visceromotor function. The pregenual ACC also has an important role, with its increased connectivity with dorsolateral frontal cortex suggesting heightened cognitive regulation of affect; and reduced connectivity with the caudate nucleus potentially underlying symptoms such as anhedonia, reduced motivation and psychomotor dysfunction.


Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaav8911 ◽  
Author(s):  
Morteza Sarafyazd ◽  
Mehrdad Jazayeri

Humans process information hierarchically. In the presence of hierarchies, sources of failures are ambiguous. Humans resolve this ambiguity by assessing their confidence after one or more attempts. To understand the neural basis of this reasoning strategy, we recorded from dorsomedial frontal cortex (DMFC) and anterior cingulate cortex (ACC) of monkeys in a task in which negative outcomes were caused either by misjudging the stimulus or by a covert switch between two stimulus-response contingency rules. We found that both areas harbored a representation of evidence supporting a rule switch. Additional perturbation experiments revealed that ACC functioned downstream of DMFC and was directly and specifically involved in inferring covert rule switches. These results‏ reveal the computational principles of hierarchical reasoning, as implemented by cortical circuits.


1997 ◽  
Vol 77 (3) ◽  
pp. 1313-1324 ◽  
Author(s):  
M. Jueptner ◽  
K. M. Stephan ◽  
C. D. Frith ◽  
D. J. Brooks ◽  
R.S.J. Frackowiak ◽  
...  

Jueptner, M., K. M. Stephan, C. D. Frith, D. J. Brooks, R.S.J. Frackowiak, and R. E. Passingham. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77: 1313–1324, 1997. We used positron emission tomography to study new learning and automatic performance in normal volunteers. Subjects learned sequences of eight finger movements by trial and error. In a previous experiment we showed that the prefrontal cortex was activated during new learning but not during automatic performance. The aim of the present experiment was to see what areas could be reactivated if the subjects performed the prelearned sequence but were required to pay attention to what they were doing. Scans were carried out under four conditions. In the first the subjects performed a prelearned sequence of eight key presses; this sequence was learned before scanning and was practiced until it had become overlearned, so that the subjects were able to perform it automatically. In the second condition the subjects learned a new sequence during scanning. In a third condition the subjects performed the prelearned sequence, but they were required to attend to what they were doing; they were instructed to think about the next movement. The fourth condition was a baseline condition. As in the earlier study, the dorsal prefrontal cortex and anterior cingulate area 32 were activated during new learning, but not during automatic performance. The left dorsal prefrontal cortex and the right anterior cingulate cortex were reactivated when subjects paid attention to the performance of the prelearned sequence compared with automatic performance of the same task. It is suggested that the critical feature was that the subjects were required to attend to the preparation of their responses. However, the dorsal prefrontal cortex and the anterior cingulate cortex were activated more when the subjects learned a new sequence than they were when subjects simply paid attention to a prelearned sequence. New learning differs from the attention condition in that the subjects generated moves, monitored the outcomes, and remembered the responses that had been successful. All these are nonroutine operations to which the subjects must attend. Further analysis is needed to specify which are the nonroutine operations that require the involvement of the dorsal prefrontal and anterior cingulate cortex.


Sign in / Sign up

Export Citation Format

Share Document