scholarly journals TMS over M1 Reveals Expression and Selective Suppression of Conflicting Action Impulses

2014 ◽  
Vol 26 (1) ◽  
pp. 1-15 ◽  
Author(s):  
A. Dilene van Campen ◽  
Max C. Keuken ◽  
Wery P. M. van den Wildenberg ◽  
K. Richard Ridderinkhof

Goal-directed action control comes into play when selecting between competing action alternatives. Response capture reflects the susceptibility of the motor system to incitement by task-irrelevant action impulses; the subsequent selective suppression of incorrect action impulses aims to counteract response capture and facilitate the desired response. The goal of this experiment was to clarify physiological mechanisms of response capture and suppression of action impulses during conflict at the level of the motor system. We administered single-pulse TMS at various intervals preceding speeded choice responses. The correct response side was designated by stimulus color, whereas stimulus location (which could match or conflict with response side) was to be ignored. TMS pulses triggered motor evoked potential and silent period, providing sensitive indices of cortico-spinal excitation and inhibition. Motor evoked potential data showed the typical progressive increase in cortico-spinal motor excitability leading up to the imminent (correct) response, which started earlier on nonconflict than on conflict trials. On conflict trials, the irrelevant stimulus location captured the incorrect response, as expressed by an early and transient rise in excitability. Silent period data showed that, already early during the response process, inhibition of the incorrect response was stronger for conflict than for nonconflict trials. Furthermore, inhibition decreased over time for nonconflict trials facilitating the imminent correct response while maintaining higher levels of inhibition on conflict trials. In conclusion, dynamic patterns of cortico-spinal excitability provide unique physiological evidence for the expression and selective suppression of action impulses captured by competing action alternatives.

2008 ◽  
Vol 8 (6) ◽  
pp. 517-523 ◽  
Author(s):  
Florian Roser ◽  
Florian H. Ebner ◽  
Marina Liebsch ◽  
Klaus Dietz ◽  
Marcos Tatagiba

Object The current neurophysiological assessment of syringomyelia is inadequate. Early-stage syringomyelia is anatomically predisposed to affect decussating spinothalamic fibers that convey pain and sensation primarily. Silent periods have been proven to be a sensitive tool for detecting alterations in this pathway. Methods Thirty-seven patients with syringomyelia were included in this prospective study. Routine electrophysiological measurements were applied including somatosensory evoked potential (SSEP) and motor evoked potential (MEP) recordings for all extremities. The silent periods were recorded from the pollicis brevis muscle, and electrical stimuli were applied to the ipsilateral digiti II. To establish baseline values, the authors had 28 healthy controls undergo monitoring. Sensitivity and specificity values were statistically evaluated according to the main clinical symptoms (paresis, dissociative syndrome, and pain). Results All control individuals had normal silent periods in voluntarily activated muscle. In syringomyelia patients, the affected limb showed pathological silent periods with all symptoms (sensitivity 30–50%). Pain was the most specific symptom (90%), despite SSEP and MEP values that were within the normal range. Conclusions Silent period testing is a sensitive neurophysiological technique and an invaluable tool for preoperative assessment of syringomyelia. Silent periods are associated with early dysfunction of thin myelinated spinothalamic tract fibers, even when routine electrophysiological measurements still reveal normal values. Conduction abnormalities that selectively abolish the silent periods can distinguish between hydromyelia (a physiologically dilated central canal) and space-occupying syringomyelia.


1983 ◽  
Vol 58 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Walter J. Levy

✓ There is a need to monitor the motor system, but it has a different blood supply and a different location in the spinal cord from those measured by traditional somatosensory evoked potential monitoring. This paper reports a motor evoked potential monitoring system that uses direct spinal cord stimulation overlying the areas of the motor tract in the cord. In nine cats, evoked potentials were recorded from the dura, which gave a much faster main signal component than the traditional dorsal column evoked potentials, which were also recorded. This 100-m/sec signal was not affected by sectioning of the dorsal columns, which was verified histologically. This mode of monitoring the motor system can be used during surgery. It may also provide a better evaluation of patients after spinal cord trauma.


2019 ◽  
Vol 9 (3) ◽  
pp. 62 ◽  
Author(s):  
Andrew Lavender ◽  
Hiroki Obata ◽  
Noritaka Kawashima ◽  
Kimitaka Nakazawa

Chronic smoking has been shown to have deleterious effects on brain function and is an important risk factor for ischemic stroke. Reduced cortical excitability has been shown among chronic smokers compared with non-smokers to have a long-term effect and so far no study has assessed the effect of smoking on short-term motor learning. Paired associative stimulation (PAS) is a commonly used method for inducing changes in excitability of the motor cortex (M1) in a way that simulates short-term motor learning. This study employed PAS to investigate the effect of chronic cigarette smoking on plasticity of M1. Stimulator output required to elicit a motor-evoked potential (MEP) of approximately 1 mV was similar between the groups prior to PAS. MEP response to single pulse stimuli increased in the control group and remained above baseline level for at least 30 min after the intervention, but not in the smokers who showed no significant increase in MEP size. The silent period was similar between groups at all time points of the experiment. This study suggests that chronic smoking may have a negative effect on the response to PAS and infers that chronic smoking may have a deleterious effect on the adaptability of M1.


2010 ◽  
Vol 22 (2) ◽  
pp. 225-239 ◽  
Author(s):  
Wery P. M. van den Wildenberg ◽  
Borís Burle ◽  
Franck Vidal ◽  
Maurits W. van der Molen ◽  
K. Richard Ridderinkhof ◽  
...  

The ability to stop ongoing motor responses in a split-second is a vital element of human cognitive control and flexibility that relies in large part on prefrontal cortex. We used the stop-signal paradigm to elucidate the engagement of primary motor cortex (M1) in inhibiting an ongoing voluntary motor response. The stop-signal paradigm taps the ability to flexibly countermand ongoing voluntary behavior upon presentation of a stop signal. We applied single-pulse TMS to M1 at several intervals following the stop signal to track the time course of excitability of the motor system related to generating and stopping a manual response. Electromyography recorded from the flexor pollicis brevis allowed quantification of the excitability of the corticospinal tract and the involvement of intracortical GABABergic circuits within M1, indexed respectively by the amplitude of the motor-evoked potential and the duration of the late part of the cortical silent period (SP). The results extend our knowledge of the neural basis of inhibitory control in three ways. First, the results revealed a dynamic interplay between response activation and stopping processes at M1 level during stop-signal inhibition of an ongoing response. Second, increased excitability of inhibitory interneurons that drives SP prolongation was evident as early as 134 msec following the instruction to stop. Third, this pattern was followed by a stop-related reduction of corticospinal excitability implemented around 180 after the stop signal. These findings point to the recruitment of GABABergic intracortical inhibitory circuits within M1 in stop-signal inhibition and support the notion of stopping as an active act of control.


2000 ◽  
Vol 89 (1) ◽  
pp. 305-313 ◽  
Author(s):  
Janet L. Taylor ◽  
Gabrielle M. Allen ◽  
Jane E. Butler ◽  
S. C. Gandevia

Responses to transcranial magnetic stimulation in human subjects ( n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical stimulation increased from ∼1.5 to 7% of ongoing torque. Thus “supraspinal” fatigue developed in each protocol. The motor evoked potential (MEP) and silent period in the elbow flexor muscles also changed. The silent period lengthened by 20–75 ms (lowest to highest duty cycle protocol) and recovered significantly with a 5-s rest. The MEP increased in area by >50% in all protocols and recovered significantly with 10 s, but not 5 s, of rest. These changes are similar to those during sustained MVC. The central fatigue demonstrated by the torque increments evoked by the stimuli did not parallel the changes in the electromyogram responses. This suggests that part of the fatigue developed during intermittent exercise is “upstream” of the motor cortex.


2013 ◽  
Vol 91 (2) ◽  
pp. 187-189 ◽  
Author(s):  
Alexis R. Mauger ◽  
James G. Hopker

Acetaminophen (ACT) facilitates the inhibition of voltage-gated calcium and sodium currents, which may effect cortico-spinal excitability. Twelve subjects ingested acetaminophen or a placebo and underwent transcranial magnetic stimulation to assess the motor evoked potential (MEP), and cortical silent period (CSP). ACT significantly increased MEP response (P > 0.05) but had no effect on CSP (P > 0.05). This indicates that ACT increases MEP and should be controlled for in studies where these measures are of interest.


2016 ◽  
Vol 31 (4) ◽  
pp. 354-363
Author(s):  
Carrie L. Peterson ◽  
Lynn M. Rogers ◽  
Michael S. Bednar ◽  
Anne M. Bryden ◽  
Michael W. Keith ◽  
...  

Background. Following biceps transfer to enable elbow extension in individuals with tetraplegia, motor re-education may be facilitated by greater corticomotor excitability. Arm posture modulates corticomotor excitability of the nonimpaired biceps. If arm posture also modulates excitability of the transferred biceps, posture may aid in motor re-education. Objective. Our objective was to determine whether multi-joint arm posture affects corticomotor excitability of the transferred biceps similar to the nonimpaired biceps. We also aimed to determine whether corticomotor excitability of the transferred biceps is related to elbow extension strength and muscle length. Methods. Corticomotor excitability was assessed in 7 arms of individuals with tetraplegia and biceps transfer using transcranial magnetic stimulation and compared to biceps excitability of nonimpaired individuals. Single-pulse transcranial magnetic stimulation was delivered to the motor cortex with the arm in functional postures at rest. Motor-evoked potential amplitude was recorded via surface electromyography. Elbow moment was recorded during maximum isometric extension trials, and muscle length was estimated using a biomechanical model. Results. Arm posture modulated corticomotor excitability of the transferred biceps differently than the nonimpaired biceps. Elbow extension strength was positively related and muscle length was unrelated, respectively, to motor-evoked potential amplitude across the arms with biceps transfer. Conclusions. Corticomotor excitability of the transferred biceps is modulated by arm posture and may contribute to strength outcomes after tendon transfer. Future work should determine whether modulating corticomotor excitability via posture promotes motor re-education during the rehabilitative period following surgery.


Sign in / Sign up

Export Citation Format

Share Document