Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors

2000 ◽  
Vol 89 (1) ◽  
pp. 305-313 ◽  
Author(s):  
Janet L. Taylor ◽  
Gabrielle M. Allen ◽  
Jane E. Butler ◽  
S. C. Gandevia

Responses to transcranial magnetic stimulation in human subjects ( n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical stimulation increased from ∼1.5 to 7% of ongoing torque. Thus “supraspinal” fatigue developed in each protocol. The motor evoked potential (MEP) and silent period in the elbow flexor muscles also changed. The silent period lengthened by 20–75 ms (lowest to highest duty cycle protocol) and recovered significantly with a 5-s rest. The MEP increased in area by >50% in all protocols and recovered significantly with 10 s, but not 5 s, of rest. These changes are similar to those during sustained MVC. The central fatigue demonstrated by the torque increments evoked by the stimuli did not parallel the changes in the electromyogram responses. This suggests that part of the fatigue developed during intermittent exercise is “upstream” of the motor cortex.

2006 ◽  
Vol 101 (4) ◽  
pp. 1036-1044 ◽  
Author(s):  
Sandra K. Hunter ◽  
Jane E. Butler ◽  
Gabrielle Todd ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

Young women are less fatigable than young men for maximal and submaximal contractions, but the contribution of supraspinal fatigue to the sex difference is not known. This study used cortical stimulation to compare the magnitude of supraspinal fatigue during sustained isometric maximal voluntary contractions (MVCs) performed with the elbow flexor muscles of young men and women. Eight women (25.6 ± 3.6 yr, mean ± SD) and 9 men (25.4 ± 3.8 yr) performed six sustained MVCs (22-s duration each, separated by 10 s). Before the fatiguing contractions, the men were stronger than the women (75.9 ± 9.2 vs. 42.7 ± 8.0 N·m; P < 0.05) in control MVCs. Voluntary activation measured with cortical stimulation before fatigue was similar for the men and women during the final control MVC (95.7 ± 3.0 vs. 93.3 ± 3.6%; P > 0.05) and at the start of the fatiguing task ( P > 0.05). By the end of the six sustained fatiguing MVCs, the men exhibited greater absolute and relative reductions in torque (65 ± 3% of initial MVC) than the women (52 ± 9%; P < 0.05). The increments in torque (superimposed twitch) generated by motor cortex stimulation during each 22-s maximal effort increased with fatigue ( P < 0.05). Superimposed twitches were similar for men and women throughout the fatiguing task (5.5 ± 4.1 vs. 7.3 ± 4.7%; P > 0.05), as well as in the last sustained contraction (7.8 ± 5.9 vs. 10.5 ± 5.5%) and in brief recovery MVCs. Voluntary activation determined using an estimated control twitch was similar for the men and women at the start of the sustained maximal contractions (91.4 ± 7.4 vs. 90.4 ± 6.8%, n = 13) and end of the sixth contraction (77.2 ± 13.3% vs. 73.1 ± 19.6%, n = 10). The increase in the area of the motor-evoked potential and duration of the silent period did not differ for men and women during the fatiguing task. However, estimated resting twitch amplitude and the peak rates of muscle relaxation showed greater relative reductions at the end of the fatiguing task for the men than the women. These results indicate that the sex difference in fatigue of the elbow flexor muscles is not explained by a difference in supraspinal fatigue in men and women but is largely due to a sex difference of mechanisms located within the elbow flexor muscles.


2008 ◽  
Vol 105 (4) ◽  
pp. 1199-1209 ◽  
Author(s):  
Sandra K. Hunter ◽  
Gabrielle Todd ◽  
Jane E. Butler ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

This study compared the contribution of supraspinal fatigue to muscle fatigue in old and young adults. Transcranial magnetic stimulation (TMS) of motor cortex was used to assess voluntary activation during maximal voluntary contractions (MVCs) of elbow flexor muscles in 17 young adults (25.5 ± 3.6 yr; mean ± SD) and 7 old adults (73.0 ± 3.3 yr). Subjects performed a fatigue task involving six sustained MVCs (22-s duration, separated by 10 s). Young adults exhibited greater reductions in maximal voluntary torque (67 ± 15% of baseline) than the old (37 ± 6%; P < 0.001). Increments in torque (superimposed twitch) generated by TMS during sustained MVCs increased for the young and old ( P < 0.001) but were larger for the old adults at the start of the sustained contractions and during recovery ( P < 0.05). Voluntary activation was less for the old adults at the start of some sustained contractions and during recovery ( P = 0.02). Motor-evoked potential area increased similarly with age during the fatiguing task but was greater for the old adults than young during recovery. Silent period duration lengthened less for the old adults during the fatigue task. At the end of the fatiguing task, peak relaxation rate of muscle fibers had declined more in the young than the old adults. The greater endurance with age is largely due to a difference in mechanisms located within the muscle. However, recovery from the fatiguing exercise is impaired for old adults because of greater supraspinal fatigue than in the young.


2008 ◽  
Vol 8 (6) ◽  
pp. 517-523 ◽  
Author(s):  
Florian Roser ◽  
Florian H. Ebner ◽  
Marina Liebsch ◽  
Klaus Dietz ◽  
Marcos Tatagiba

Object The current neurophysiological assessment of syringomyelia is inadequate. Early-stage syringomyelia is anatomically predisposed to affect decussating spinothalamic fibers that convey pain and sensation primarily. Silent periods have been proven to be a sensitive tool for detecting alterations in this pathway. Methods Thirty-seven patients with syringomyelia were included in this prospective study. Routine electrophysiological measurements were applied including somatosensory evoked potential (SSEP) and motor evoked potential (MEP) recordings for all extremities. The silent periods were recorded from the pollicis brevis muscle, and electrical stimuli were applied to the ipsilateral digiti II. To establish baseline values, the authors had 28 healthy controls undergo monitoring. Sensitivity and specificity values were statistically evaluated according to the main clinical symptoms (paresis, dissociative syndrome, and pain). Results All control individuals had normal silent periods in voluntarily activated muscle. In syringomyelia patients, the affected limb showed pathological silent periods with all symptoms (sensitivity 30–50%). Pain was the most specific symptom (90%), despite SSEP and MEP values that were within the normal range. Conclusions Silent period testing is a sensitive neurophysiological technique and an invaluable tool for preoperative assessment of syringomyelia. Silent periods are associated with early dysfunction of thin myelinated spinothalamic tract fibers, even when routine electrophysiological measurements still reveal normal values. Conduction abnormalities that selectively abolish the silent periods can distinguish between hydromyelia (a physiologically dilated central canal) and space-occupying syringomyelia.


2021 ◽  
Vol 2 ◽  
Author(s):  
Oshin Tyagi ◽  
Ranjana K. Mehta

Neuromuscular fatigue is exacerbated under stress and is characterized by shorter endurance time, greater perceived effort, lower force steadiness, and higher electromyographic activity. However, the underlying mechanisms of fatigue under stress are not well-understood. This review investigated existing methods of identifying central mechanisms of neuromuscular fatigue and the potential mechanisms of the influence of stress on neuromuscular fatigue. We found that the influence of stress on the activity of the prefrontal cortex, which are also involved in exercise regulation, may contribute to exacerbated fatigue under stress. We also found that the traditional methods involve the synchronized use of transcranial magnetic stimulation, peripheral nerve stimulation, and electromyography to identify the contribution of supraspinal fatigue, through measures such as voluntary activation, motor evoked potential, and silent period. However, these popular techniques are unable to provide information about neural alterations upstream of the descending drive that may contribute to supraspinal fatigue development. To address this gap, we propose that functional brain imaging techniques, which provide insights on activation and information flow between brain regions, need to be combined with the traditional measures of measuring central fatigue to fully understand the mechanisms behind the influence of stress on fatigue.


2014 ◽  
Vol 117 (12) ◽  
pp. 1440-1450 ◽  
Author(s):  
Julien Duclay ◽  
Benjamin Pasquet ◽  
Alain Martin ◽  
Jacques Duchateau

This study investigated the influence of the torque produced by plantar flexor muscles on cortical and spinal excitability during lengthening and shortening voluntary contractions. To that purpose, modulations of motor-evoked potential (MEP) and Hoffmann (H) reflex were compared in the soleus (SOL) and medial gastrocnemius (MG) during anisometric submaximal and maximal voluntary contraction (MVC) of the plantar flexor muscles. For the submaximal shortening and lengthening contractions, the target torque was set at 50% of their respective MVC force. The results indicate that the amplitudes of both MEP and H-reflex responses, normalized to the maximal M wave, were significantly ( P < 0.05) lower during lengthening compared with shortening submaximal contraction. For these two parameters, the reduction reached, respectively, 22.1 and 31.9% for the SOL and 34.5 and 29.3% for the MG. During MVC, normalized MEP and H reflex of the SOL were both reduced significantly by 19.9% ( P < 0.05) and 29.9% ( P < 0.001) during lengthening and shortening contraction, respectively, whereas no significant change ( P > 0.05) was observed for MG. In addition, the silent period in the ongoing electromyogram (EMG) activity following the MEP was significantly ( P < 0.01) briefer during lengthening than shortening contractions but did not differ ( P > 0.05) between contraction intensities and muscles. Together, these results indicate that cortical and spinal mechanisms involved in the modulation of muscle activation during shortening and lengthening contractions differ between synergistic muscles according to the torque produced. Data further document previous studies reporting that the specific modulation of muscle activation during lengthening contraction is not torque dependent.


2008 ◽  
Vol 104 (6) ◽  
pp. 1674-1682 ◽  
Author(s):  
Janette L. Smith ◽  
Jane E. Butler ◽  
Peter G. Martin ◽  
Rachel A. McBain ◽  
Janet L. Taylor

Exercise performance is impaired by increased respiratory work, yet the mechanism for this is unclear. This experiment assessed whether neural drive to an exercising muscle was affected by cortically driven increases in ventilation. On each of 5 days, eight subjects completed a 2-min maximal voluntary contraction (MVC) of the elbow flexor muscles, followed by 4 min of recovery, while transcranial magnetic stimulation tested for suboptimal neural drive to the muscle. On 1 day, subjects breathed without instructions under normocapnia. During the 2-min MVC, ventilation was ∼3.5 times that at rest. On another day, subjects breathed without instruction under hypercapnia. During the 2-min MVC, ventilation was ∼1.5 times that on the normocapnic day. On another 2 days under normocapnia, subjects voluntarily matched their breathing to the uninstructed breathing under normocapnia and hypercapnia using target feedback of the rate and inspiratory volume. On a fifth day under normocapnia, the volume feedback was set to each subject's vital capacity. On this day, ventilation during the 2-min MVC was approximately twice that on the uninstructed normocapnic day (or ∼7 times rest). The experimental manipulations succeeded in producing voluntary and involuntary hyperpnea. However, maximal voluntary force, fatigue and voluntary activation of the elbow flexor muscles were unaffected by cortically or chemically driven increases in ventilation. Results suggest that any effects of increased respiratory work on limb exercise performance are not due to a failure to drive both muscle groups optimally.


2013 ◽  
Vol 91 (2) ◽  
pp. 187-189 ◽  
Author(s):  
Alexis R. Mauger ◽  
James G. Hopker

Acetaminophen (ACT) facilitates the inhibition of voltage-gated calcium and sodium currents, which may effect cortico-spinal excitability. Twelve subjects ingested acetaminophen or a placebo and underwent transcranial magnetic stimulation to assess the motor evoked potential (MEP), and cortical silent period (CSP). ACT significantly increased MEP response (P > 0.05) but had no effect on CSP (P > 0.05). This indicates that ACT increases MEP and should be controlled for in studies where these measures are of interest.


Sign in / Sign up

Export Citation Format

Share Document