scholarly journals Functional Preference for Object Sounds and Voices in the Brain of Early Blind and Sighted Individuals

2018 ◽  
Vol 30 (1) ◽  
pp. 86-106 ◽  
Author(s):  
Giulia Dormal ◽  
Maxime Pelland ◽  
Mohamed Rezk ◽  
Esther Yakobov ◽  
Franco Lepore ◽  
...  

Sounds activate occipital regions in early blind individuals. However, how different sound categories map onto specific regions of the occipital cortex remains a matter of debate. We used fMRI to characterize brain responses of early blind and sighted individuals to familiar object sounds, human voices, and their respective low-level control sounds. In addition, sighted participants were tested while viewing pictures of faces, objects, and phase-scrambled control pictures. In both early blind and sighted, a double dissociation was evidenced in bilateral auditory cortices between responses to voices and object sounds: Voices elicited categorical responses in bilateral superior temporal sulci, whereas object sounds elicited categorical responses along the lateral fissure bilaterally, including the primary auditory cortex and planum temporale. Outside the auditory regions, object sounds also elicited categorical responses in the left lateral and in the ventral occipitotemporal regions in both groups. These regions also showed response preference for images of objects in the sighted group, thus suggesting a functional specialization that is independent of sensory input and visual experience. Between-group comparisons revealed that, only in the blind group, categorical responses to object sounds extended more posteriorly into the occipital cortex. Functional connectivity analyses evidenced a selective increase in the functional coupling between these reorganized regions and regions of the ventral occipitotemporal cortex in the blind group. In contrast, vocal sounds did not elicit preferential responses in the occipital cortex in either group. Nevertheless, enhanced voice-selective connectivity between the left temporal voice area and the right fusiform gyrus were found in the blind group. Altogether, these findings suggest that, in the absence of developmental vision, separate auditory categories are not equipotent in driving selective auditory recruitment of occipitotemporal regions and highlight the presence of domain-selective constraints on the expression of cross-modal plasticity.

2017 ◽  
Author(s):  
Giulia Dormal ◽  
Maxime Pelland ◽  
Mohamed Rezk ◽  
Esther Yakobov ◽  
Franco Lepore ◽  
...  

AbstractSounds activate occipital regions in early blind individuals. How different sound categories map onto specific regions of the occipital cortex remains however debated. We used fMRI to characterize brain responses of early blind and sighted individuals to familiar object sounds, human voices and their respective low-level control sounds. Sighted participants were additionally tested when viewing pictures of faces, objects and phase-scrambled control pictures. In both early blind and sighted, a double dissociation was evidenced in bilateral auditory cortices between responses to voices and object sounds: voices elicited categorical responses in bilateral superior temporal sulci while object sounds elicited categorical responses along the lateral fissure bilaterally, including the primary auditory cortex and planum temporale. Outside of the auditory regions, object sounds additionally elicited categorical responses in left lateral and ventral occipito-temporal regions in both groups. These regions also showed response preference for images of objects in the sighted, thus suggesting a functional specialization in these regions that is independent of sensory input and visual experience. Between-group comparisons revealed that only in the blind group, categorical responses to object sounds extended more posteriorly into the occipital cortex. Functional connectivity analyses evidenced a selective increase in the functional coupling between these reorganized regions and regions of the ventral occipito-temporal cortex in the early blind. In contrast, vocal sounds did not elicit preferential responses in the occipital cortex in either group. Nevertheless, enhanced voice-selective connectivity between the left temporal voice area and the right fusiform gyrus were found in the blind. Altogether, these findings suggest that separate auditory categories are not equipotent in driving selective auditory recruitment of occipito-temporal regions in the absence of developmental vision, highlighting domain-region constraints on the expression of crossmodal plasticity.


2006 ◽  
Vol 18 (4) ◽  
pp. 522-538 ◽  
Author(s):  
Christian C. Ruff ◽  
Jon Driver

Attending to the location of an expected visual target can lead to anticipatory activations in spatiotopic occipital cortex, emerging before target onset. But less is known about how the brain may prepare for a distractor at a known location remote from the target. In a psychophysical experiment, we found that trial-to-trial advance knowledge about the presence of a distractor in the target-opposite hemifield significantly reduced its behavioral cost. In a subsequent functional magnetic resonance imaging experiment with similar task and stimuli, we found anticipatory activations in the occipital cortex contralateral to the expected distractor, but no additional target modulation, when participants were given advance information about a distractor's subsequent presence and location. Several attention-related control structures (frontal eye fields and superior parietal cortex) were active during attentional preparation for all trials, whereas the left superior prefrontal and right angular gyri were additionally activated when a distractor was anticipated. The right temporoparietal junction showed stronger functional coupling with occipital regions during preparation for trials with an isolated target than for trials with a distractor expected. These results show that anticipation of a visual distractor at a known location, remote from the target, can lead to (1) a reduction in the behavioral cost of that distractor, (2) preparatory modulation of the occipital cortex contralateral to the location of the expected distractor, and (3) anticipatory activation of distinct parietal and frontal brain structures. These findings indicate that specific components of preparatory visual attention may be devoted to minimizing the impact of distractors, not just to enhancements of target processing.


2019 ◽  
Author(s):  
Yanzhu Li ◽  
Huan Luo ◽  
Xing Tian

AbstractWhat enables our mental activities for thinking verbally or humming in our mind? We hypothesized that the interaction between motor and sensory systems induces speech and melodic mental representations, and this motor-to-sensory transformation forms the neural basis that enables our verbal thinking and covert singing. Analogous with the neural entrainment to auditory stimuli, participants imagined singing lyrics of well-known songs rhythmically while their neural electromagnetic signals were recorded using magnetoencephalography (MEG). We found that when participants imagined singing the same song in similar durations across trials, the delta frequency band (1-3 Hz, similar to the rhythm of the songs) showed more consistent phase coherence across trials. This neural phase tracking of imagined singing was observed in a frontal-parietal-temporal network – the proposed motor-to-sensory transformation pathway, including the inferior frontal gyrus (IFG), insula, premotor, intra-parietal sulcus (IPS), the temporal-parietal junction (TPJ), primary auditory cortex (HG), and superior temporal gyrus and sulcus (STG & STS). These results suggest that neural responses can entrain the rhythm of mental activity. Moreover, the theta band (4-8 Hz) phase coherence was localized in the auditory cortices. The mu (9-12 Hz) and beta (17-20 Hz) bands were observed in the right-lateralized sensorimotor systems that were consistent with the singing context. The gamma band was broadly manifested in the observed network. The coherent activation in the motor-to-sensory transformation network as well as the frequency-specific activation in the motor, somatosensory, and auditory cortices mediate the internal construction of perceptual representations and form the foundation of neural computations for mental operations.


2018 ◽  
Author(s):  
Virginie Crollen ◽  
Latifa Lazzouni ◽  
Antoine Bellemare ◽  
Mohamed Rezk ◽  
Franco Lepore ◽  
...  

AbstractArithmetic reasoning activates the occipital cortex of early blind people (EB). This activation of visual areas may reflect functional flexibility or the intrinsic computational role of specific occipital regions. We contrasted these competing hypotheses by characterizing the brain activity of EB and sighted participants while performing subtraction, multiplication and a control verbal task. In both groups, subtraction selectively activated a bilateral dorsal network commonly activated during spatial processing. Multiplication triggered more activity in temporal regions thought to participate in memory retrieval. No between-group difference was observed for the multiplication task whereas subtraction induced enhanced activity in the right dorsal occipital cortex of the blind individuals only. As this area overlaps and exhibits increased functional connectivity with regions showing selective tuning to auditory spatial processing, our results suggest that the recruitment of occipital regions during high-level cognition in the blind actually relates to the intrinsic computational role of the reorganized regions.


2020 ◽  
Vol 132 (6) ◽  
pp. 2000-2007 ◽  
Author(s):  
Soroush Niketeghad ◽  
Abirami Muralidharan ◽  
Uday Patel ◽  
Jessy D. Dorn ◽  
Laura Bonelli ◽  
...  

Stimulation of primary visual cortices has the potential to restore some degree of vision to blind individuals. Developing safe and reliable visual cortical prostheses requires assessment of the long-term stability, feasibility, and safety of generating stimulation-evoked perceptions.A NeuroPace responsive neurostimulation system was implanted in a blind individual with an 8-year history of bare light perception, and stimulation-evoked phosphenes were evaluated over 19 months (41 test sessions). Electrical stimulation was delivered via two four-contact subdural electrode strips implanted over the right medial occipital cortex. Current and charge thresholds for eliciting visual perception (phosphenes) were measured, as were the shape, size, location, and intensity of the phosphenes. Adverse events were also assessed.Stimulation of all contacts resulted in phosphene perception. Phosphenes appeared completely or partially in the left hemifield. Stimulation of the electrodes below the calcarine sulcus elicited phosphenes in the superior hemifield and vice versa. Changing the stimulation parameters of frequency, pulse width, and burst duration affected current thresholds for eliciting phosphenes, and increasing the amplitude or frequency of stimulation resulted in brighter perceptions. While stimulation thresholds decreased between an average of 5% and 12% after 19 months, spatial mapping of phosphenes remained consistent over time. Although no serious adverse events were observed, the subject experienced mild headaches and dizziness in three instances, symptoms that did not persist for more than a few hours and for which no clinical intervention was required.Using an off-the-shelf neurostimulator, the authors were able to reliably generate phosphenes in different areas of the visual field over 19 months with no serious adverse events, providing preliminary proof of feasibility and safety to proceed with visual epicortical prosthetic clinical trials. Moreover, they systematically explored the relationship between stimulation parameters and phosphene thresholds and discovered the direct relation of perception thresholds based on primary visual cortex (V1) neuronal population excitation thresholds.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kanan Hirano ◽  
Kentaro Oba ◽  
Toshiki Saito ◽  
Shohei Yamazaki ◽  
Ryuta Kawashima ◽  
...  

Abstract Facing one’s own death and managing the fear of death are important existential issues, particularly in older populations. Although recent functional magnetic resonance imaging (fMRI) studies have investigated brain responses to death-related stimuli, none has examined whether this brain activation was specific to one’s own death or how it was related to dispositional fear of death. In this study, during fMRI, 34 elderly participants (aged, 60–72 years) were presented with either death-related or death-unrelated negative words and asked to evaluate the relevance of these words to the “self” or the “other.” The results showed that only the left supplementary motor area (SMA) was selectively activated during self-relevant judgments of death-related words. Regression analyses of the effect of fear of death on brain activation during death-related thoughts identified a significant negative linear correlation in the right supramarginal gyrus (SMG) and an inverted-U-shaped correlation in the posterior cingulate cortex (PCC) only during self-relevant judgments. Our results suggest potential involvement of the SMA in the existential aspect of thoughts of death. The distinct fear-of-death-dependent responses in the SMG and PCC may reflect fear-associated distancing of the physical self and the processing of death-related thoughts as a self-relevant future agenda, respectively.


2012 ◽  
Vol 24 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Frank Oppermann ◽  
Uwe Hassler ◽  
Jörg D. Jescheniak ◽  
Thomas Gruber

The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.


2021 ◽  
Author(s):  
Patrik Wikman ◽  
Mona Moisala ◽  
Artturi Ylinen ◽  
Jallu Lindblom ◽  
Sointu Leikas ◽  
...  

Previous studies have examined the neural correlates of receiving negative feedback from peers during virtual social interaction in young people. However, there is a lack of studies using platforms adolescents use in daily life. In the present study, 92 participants ages 17 to 20 performed a task that involved receiving positive and negative feedback from peers in a Facebook-like platform, while brain activity was measured using functional magnetic resonance imaging (fMRI). We also studied the effects of real-life habits of social media use on neural sensitivity to negative feedback. Peer feedback was shown to activate clusters in the ventrolateral prefrontal cortex (VLPFC), the medial prefrontal cortex (MPFC), superior temporal gyrus and sulcus (STG/STS), and occipital cortex (OC). Negative feedback was related to greater activity in the VLPFC, MPFC, and anterior insula than positive feedback, replicating previous findings on peer feedback and social rejection. Habits of social media use did not correlate with brain responses to negative feedback.


2002 ◽  
Vol 88 (1) ◽  
pp. 540-543 ◽  
Author(s):  
John J. Foxe ◽  
Glenn R. Wylie ◽  
Antigona Martinez ◽  
Charles E. Schroeder ◽  
Daniel C. Javitt ◽  
...  

Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory.


Sign in / Sign up

Export Citation Format

Share Document