scholarly journals Structural and Functional MRI Evidence for Distinct Medial Temporal and Prefrontal Roles in Context-dependent Relational Memory

2019 ◽  
Vol 31 (12) ◽  
pp. 1857-1872 ◽  
Author(s):  
Hillary Schwarb ◽  
Curtis L. Johnson ◽  
Michael R. Dulas ◽  
Matthew D. J. McGarry ◽  
Joseph L. Holtrop ◽  
...  

Declarative memory is supported by distributed brain networks in which the medial-temporal lobes (MTLs) and pFC serve as important hubs. Identifying the unique and shared contributions of these regions to successful memory performance is an active area of research, and a growing literature suggests that these structures often work together to support declarative memory. Here, we present data from a context-dependent relational memory task in which participants learned that individuals belonged in a single room in each of two buildings. Room assignment was consistent with an underlying contextual rule structure in which male and female participants were assigned to opposite sides of a building and the side assignment switched between buildings. In two experiments, neural correlates of performance on this task were evaluated using multiple neuroimaging tools: diffusion tensor imaging (Experiment 1), magnetic resonance elastography (Experiment 1), and functional MRI (Experiment 2). Structural and functional data from each individual modality provided complementary and consistent evidence that the hippocampus and the adjacent white matter tract (i.e., fornix) supported relational memory, whereas the ventromedial pFC/OFC (vmPFC/OFC) and the white matter tract connecting vmPFC/OFC to MTL (i.e., uncinate fasciculus) supported memory-guided rule use. Together, these data suggest that MTL and pFC structures differentially contribute to and support contextually guided relational memory.

2019 ◽  
Vol 30 (3) ◽  
pp. 1001-1015 ◽  
Author(s):  
M Postans ◽  
G D Parker ◽  
H Lundell ◽  
M Ptito ◽  
K Hamandi ◽  
...  

Abstract The dorsal hippocampal commissure (DHC) is a white matter tract that provides interhemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted magnetic resonance imaging (DW-MRI) and white matter tractography to reconstruct the DHC in both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate a close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived diffusion tensor MRI metrics from the DHC in a large sample of human subjects to investigate whether interindividual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC correlated with performance in a standardized recognition memory task, an effect that was not reproduced in a comparison commissure tract—the anterior commissure. These findings highlight a potential role for the DHC in recognition memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease.


2018 ◽  
Author(s):  
M Postans ◽  
GD Parker ◽  
H Lundell ◽  
M Ptito ◽  
K Hamandi ◽  
...  

AbstractThe dorsal hippocampal commissure (DHC) is a white matter tract that provides inter-hemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted MRI (DW-MRI) and white matter tractography to reconstruct the DHC across both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived Diffusion Tensor MRI (DT-MRI) metrics from the DHC in a large sample of human subjects to investigate whether inter-individual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC was correlated with performance in a standardised episodic memory task; an effect that was not reproduced in a comparison commissure tract – the anterior commissure. These findings highlight a role for the DHC in episodic memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease.


2020 ◽  
Vol 14 ◽  
Author(s):  
Giorgia Committeri ◽  
Agustina Fragueiro ◽  
Maria Maddalena Campanile ◽  
Marco Lagatta ◽  
Ford Burles ◽  
...  

The medial temporal lobe supports both navigation and declarative memory. On this basis, a theory of phylogenetic continuity has been proposed according to which episodic and semantic memories have evolved from egocentric (e.g., path integration) and allocentric (e.g., map-based) navigation in the physical world, respectively. Here, we explored the behavioral significance of this neurophysiological model by investigating the relationship between the performance of healthy individuals on a path integration and an episodic memory task. We investigated the path integration performance through a proprioceptive Triangle Completion Task and assessed episodic memory through a picture recognition task. We evaluated the specificity of the association between performance in these two tasks by including in the study design a verbal semantic memory task. We also controlled for the effect of attention and working memory and tested the robustness of the results by including alternative versions of the path integration and semantic memory tasks. We found a significant positive correlation between the performance on the path integration the episodic, but not semantic, memory tasks. This pattern of correlation was not explained by general cognitive abilities and persisted also when considering a visual path integration task and a non-verbal semantic memory task. Importantly, a cross-validation analysis showed that participants' egocentric navigation abilities reliably predicted episodic memory performance. Altogether, our findings support the hypothesis of a phylogenetic continuity between egocentric navigation and episodic memory and pave the way for future research on the potential causal role of egocentric navigation on multiple forms of episodic memory.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Allen A Champagne ◽  
Emile Peponoulas ◽  
Itamar Terem ◽  
Andrew Ross ◽  
Maryam Tayebi ◽  
...  

Abstract Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.


NeuroImage ◽  
2004 ◽  
Vol 22 (3) ◽  
pp. 1302-1314 ◽  
Author(s):  
Savannah C Partridge ◽  
Pratik Mukherjee ◽  
Roland G Henry ◽  
Steven P Miller ◽  
Jeffrey I Berman ◽  
...  

2003 ◽  
Vol 58 (6) ◽  
pp. 455-462 ◽  
Author(s):  
S.J. Price ◽  
N.G. Burnet ◽  
T. Donovan ◽  
H.A.L. Green ◽  
A. Peña ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Megan M Kangiser ◽  
Alicia M Thomas ◽  
Christine M Kaiver ◽  
Krista M Lisdahl

Abstract Objective Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. Methods Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18–25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. Results Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus—temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. Conclusions Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


Sign in / Sign up

Export Citation Format

Share Document