scholarly journals Nicotine Effects on White Matter Microstructure in Young Adults

2019 ◽  
Vol 35 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Megan M Kangiser ◽  
Alicia M Thomas ◽  
Christine M Kaiver ◽  
Krista M Lisdahl

Abstract Objective Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. Methods Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18–25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. Results Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus—temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. Conclusions Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.

2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Lauren M Ostrowski ◽  
Daniel Y Song ◽  
Emily L Thorn ◽  
Erin E Ross ◽  
Sally M Stoyell ◽  
...  

Abstract Benign epilepsy with centrotemporal spikes is a common childhood epilepsy syndrome that predominantly affects boys, characterized by self-limited focal seizures arising from the perirolandic cortex and fine motor abnormalities. Concurrent with the age-specific presentation of this syndrome, the brain undergoes a developmentally choreographed sequence of white matter microstructural changes, including maturation of association u-fibres abutting the cortex. These short fibres mediate local cortico-cortical communication and provide an age-sensitive structural substrate that could support a focal disease process. To test this hypothesis, we evaluated the microstructural properties of superficial white matter in regions corresponding to u-fibres underlying the perirolandic seizure onset zone in children with this epilepsy syndrome compared with healthy controls. To verify the spatial specificity of these features, we characterized global superficial and deep white matter properties. We further evaluated the characteristics of the perirolandic white matter in relation to performance on a fine motor task, gender and abnormalities observed on EEG. Children with benign epilepsy with centrotemporal spikes (n = 20) and healthy controls (n = 14) underwent multimodal testing with high-resolution MRI including diffusion tensor imaging sequences, sleep EEG recordings and fine motor assessment. We compared white matter microstructural characteristics (axial, radial and mean diffusivity, and fractional anisotropy) between groups in each region. We found distinct abnormalities corresponding to the perirolandic u-fibre region, with increased axial, radial and mean diffusivity and fractional anisotropy values in children with epilepsy (P = 0.039, P = 0.035, P = 0.042 and P = 0.017, respectively). Increased fractional anisotropy in this region, consistent with decreased integrity of crossing sensorimotor u-fibres, correlated with inferior fine motor performance (P = 0.029). There were gender-specific differences in white matter microstructure in the perirolandic region; males and females with epilepsy and healthy males had higher diffusion and fractional anisotropy values than healthy females (P ≤ 0.035 for all measures), suggesting that typical patterns of white matter development disproportionately predispose boys to this developmental epilepsy syndrome. Perirolandic white matter microstructure showed no relationship to epilepsy duration, duration seizure free, or epileptiform burden. There were no group differences in diffusivity or fractional anisotropy in superficial white matter outside of the perirolandic region. Children with epilepsy had increased radial diffusivity (P = 0.022) and decreased fractional anisotropy (P = 0.027) in deep white matter, consistent with a global delay in white matter maturation. These data provide evidence that atypical maturation of white matter microstructure is a basic feature in benign epilepsy with centrotemporal spikes and may contribute to the epilepsy, male predisposition and clinical comorbidities observed in this disorder.


2018 ◽  
Vol 24 (7) ◽  
pp. 1020-1031
Author(s):  
Ariadna Albajara Sáenz ◽  
Thomas Villemonteix ◽  
Hichem Slama ◽  
Simon Baijot ◽  
Alison Mary ◽  
...  

Objective: Using Diffusion Tensor Imaging (DTI), to investigate microstructural white matter differences between ADHD and typically developing children (TDC), and their association with inhibition and working memory performance usually impaired in ADHD. Method: Fractional anisotropy (FA) and mean diffusivity (MD) were estimated in 36 noncomorbid children with a Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; DSM-IV-TR) diagnosis of combined type ADHD and 20 TDC. Correlations between FA/MD and Stop Signal Task and N-Back performance parameters were computed. Results: Working memory performance was significantly associated with MD in the superior longitudinal fasciculus (SLF) and the cingulum in the ADHD group. No between-group differences in FA/MD reached significance, after controlling for between-group head motion differences. Conclusion: The association between white matter integrity in the cingulum and the SLF and working memory performance confirms previous studies. Our results also show that when critical conditions are controlled (age, comorbidity, head motion), no ADHD-related structural abnormality (FA/MD) are observed, in line with prior suggestions.


2021 ◽  
pp. 0271678X2199098
Author(s):  
Saima Hilal ◽  
Siwei Liu ◽  
Tien Yin Wong ◽  
Henri Vrooman ◽  
Ching-Yu Cheng ◽  
...  

To determine whether white matter network disruption mediates the association between MRI markers of cerebrovascular disease (CeVD) and cognitive impairment. Participants (n = 253, aged ≥60 years) from the Epidemiology of Dementia in Singapore study underwent neuropsychological assessments and MRI. CeVD markers were defined as lacunes, white matter hyperintensities (WMH), microbleeds, cortical microinfarcts, cortical infarcts and intracranial stenosis (ICS). White matter microstructure damage was measured as fractional anisotropy and mean diffusivity by tract based spatial statistics from diffusion tensor imaging. Cognitive function was summarized as domain-specific Z-scores. Lacunar counts, WMH volume and ICS were associated with worse performance in executive function, attention, language, verbal and visual memory. These three CeVD markers were also associated with white matter microstructural damage in the projection, commissural, association, and limbic fibers. Path analyses showed that lacunar counts, higher WMH volume and ICS were associated with executive and verbal memory impairment via white matter disruption in commissural fibers whereas impairment in the attention, visual memory and language were mediated through projection fibers. Our study shows that the abnormalities in white matter connectivity may underlie the relationship between CeVD and cognition. Further longitudinal studies are needed to understand the cause-effect relationship between CeVD, white matter damage and cognition.


Neurology ◽  
2018 ◽  
Vol 92 (1) ◽  
pp. e30-e39 ◽  
Author(s):  
Meher R. Juttukonda ◽  
Giulia Franco ◽  
Dario J. Englot ◽  
Ya-Chen Lin ◽  
Kalen J. Petersen ◽  
...  

ObjectiveTo assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.MethodsSedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.ResultsFractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05).ConclusionsRegionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.


2018 ◽  
Vol 32 (1) ◽  
pp. 10-16
Author(s):  
Alexander Rau ◽  
Elias Kellner ◽  
Niels A Foit ◽  
Niklas Lützen ◽  
Dieter H Heiland ◽  
...  

The aim of this study was to evaluate whether ganglioglioma (GGL), dysembryoplastic neuroepithelial tumour (DNET) and FCD (focal cortical dysplasia) are distinguishable through diffusion tensor imaging. Additionally, it was investigated whether the diffusion measures differed in the perilesional (pNAWM) and in the contralateral normal appearing white matter (cNAWM). Six GGLs, eight DNETs and seven FCDs were included in this study. Quantitative diffusion measures, that is, axial, radial and mean diffusivity and fractional anisotropy, were determined in the lesion identified on isotropic T2 or FLAIR-weighted images and in pNAWM and cNAWM, respectively. DNET differed from FCD in mean diffusivity, and GGL from FCD in radial diffusivity. Both types of glioneuronal tumours were different from pNAWM in fractional anisotropy and radial diffusivity. For identifying the tumour edges, threshold values for tumour-free tissue were investigated with receiver operating characteristic analyses: tumour could be separated from pNAWM at a threshold ≤ 0.32 (fractional anisotropy) or ≥ 0.56 (radial diffusivity) *10–3 mm2/s (area under the curve 0.995 and 0.990 respectively). While diffusion parameters of FCDs differed from cNAWM (radial diffusivity (*10–3 mm/s2): 0.74 ± 0.19 vs. 0.43 ± 0.05; corrected p-value < 0.001), the pNAWM could not be differentiated from the FCD.


2021 ◽  
Vol 26 (3) ◽  
pp. 2714-2721
Author(s):  
XIAOFENG YANG ◽  
◽  
WANMENG XIE ◽  

Our objective was to study the correlation between Diffusion tensor MR imaging (DTI) effect and white matter structural integrity, working memory in leukoaraiosis patients. 100 leukoaraiosis patients referring to the First Affiliated Hospital of Beijing Medical University from December 2018 to December 2019, were selected as study subjects and divided into four groups according to disease severity: lesion-free group, mild lesion group, moderate lesion group, and severe lesion group. All patients underwent magnetic resonance diffusion tensor imaging to collect DWI images and analyze Fractional anisotropy (FA), mean diffusivity (MD), ReHo values of white matter area under different grading. The patients’ working memory was tested via auditory verb learning test and Stroop color word test, so that correlation between white matter structural integrity and working memory can be analyzed. Results: There are statistically significant differences in FA values of the right posterior thalamic radiation, the right sagittal layer and the right superior longitudinal fasciculus, MD values of the right sagittal layer, the right cingulum bundle, the left cingulum bundle, the right inferior fasciculus fronto-occipitalis and the left inferior fasciculus frontooccipitalis, as well as instant recall, delayed recall, delayed recognition, card A (dot), card B (character), card C (color word) and SIE value (P<0.01). Correlation is shown between white matter structural integrity and working memory, gender, age, grading, disease course, recurrence interval, white matter area, and testing methods. There was a correlation between DTI effect and white matter structural integrity, working memory in leukoaraiosis patients, and leukoaraiosis patients have memory impairment.


2018 ◽  
Author(s):  
Farshid Sepehrband ◽  
Ryan P Cabeen ◽  
Jeiran Choupan ◽  
Giuseppe Barisano ◽  
Meng Law ◽  
...  

AbstractDiffusion tensor imaging (DTI) has been extensively used to map changes in brain tissue related to neurological disorders. Among the most widespread DTI findings are increased mean diffusivity and decreased fractional anisotropy of white matter tissue in neurodegenerative diseases. Here we utilize multi-shell diffusion imaging to separate diffusion signal of the brain parenchyma from fluid within the white matter. We show that unincorporated anisotropic water in perivascular space (PVS) significantly, and systematically, biases DTI measures, casting new light on the biological validity of many previously reported findings. Despite the challenge this poses for interpreting these past findings, our results suggest that multi-shell diffusion MRI provides a new opportunity for incorporating the PVS contribution, ultimately strengthening the clinical and scientific value of diffusion MRI.HighlightsPerivascular space (PVS) fluid significantly contributes to diffusion tensor imaging metricsIncreased PVS fluid results in increased mean diffusivity and decreased fractional anisotropyPVS contribution to diffusion signal is overlooked and demands further investigation


Sign in / Sign up

Export Citation Format

Share Document