scholarly journals Uncovering a Role for the Dorsal Hippocampal Commissure in Recognition Memory

2019 ◽  
Vol 30 (3) ◽  
pp. 1001-1015 ◽  
Author(s):  
M Postans ◽  
G D Parker ◽  
H Lundell ◽  
M Ptito ◽  
K Hamandi ◽  
...  

Abstract The dorsal hippocampal commissure (DHC) is a white matter tract that provides interhemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted magnetic resonance imaging (DW-MRI) and white matter tractography to reconstruct the DHC in both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate a close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived diffusion tensor MRI metrics from the DHC in a large sample of human subjects to investigate whether interindividual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC correlated with performance in a standardized recognition memory task, an effect that was not reproduced in a comparison commissure tract—the anterior commissure. These findings highlight a potential role for the DHC in recognition memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease.

2018 ◽  
Author(s):  
M Postans ◽  
GD Parker ◽  
H Lundell ◽  
M Ptito ◽  
K Hamandi ◽  
...  

AbstractThe dorsal hippocampal commissure (DHC) is a white matter tract that provides inter-hemispheric connections between temporal lobe brain regions. Despite the importance of these regions for learning and memory, there is scant evidence of a role for the DHC in successful memory performance. We used diffusion-weighted MRI (DW-MRI) and white matter tractography to reconstruct the DHC across both humans (in vivo) and nonhuman primates (ex vivo). Across species, our findings demonstrate close consistency between the known anatomy and tract reconstructions of the DHC. Anterograde tract-tracer techniques also highlighted the parahippocampal origins of DHC fibers in nonhuman primates. Finally, we derived Diffusion Tensor MRI (DT-MRI) metrics from the DHC in a large sample of human subjects to investigate whether inter-individual variation in DHC microstructure is predictive of memory performance. The mean diffusivity of the DHC was correlated with performance in a standardised episodic memory task; an effect that was not reproduced in a comparison commissure tract – the anterior commissure. These findings highlight a role for the DHC in episodic memory, and our tract reconstruction approach has the potential to generate further novel insights into the role of this previously understudied white matter tract in both health and disease.


2019 ◽  
Vol 31 (12) ◽  
pp. 1857-1872 ◽  
Author(s):  
Hillary Schwarb ◽  
Curtis L. Johnson ◽  
Michael R. Dulas ◽  
Matthew D. J. McGarry ◽  
Joseph L. Holtrop ◽  
...  

Declarative memory is supported by distributed brain networks in which the medial-temporal lobes (MTLs) and pFC serve as important hubs. Identifying the unique and shared contributions of these regions to successful memory performance is an active area of research, and a growing literature suggests that these structures often work together to support declarative memory. Here, we present data from a context-dependent relational memory task in which participants learned that individuals belonged in a single room in each of two buildings. Room assignment was consistent with an underlying contextual rule structure in which male and female participants were assigned to opposite sides of a building and the side assignment switched between buildings. In two experiments, neural correlates of performance on this task were evaluated using multiple neuroimaging tools: diffusion tensor imaging (Experiment 1), magnetic resonance elastography (Experiment 1), and functional MRI (Experiment 2). Structural and functional data from each individual modality provided complementary and consistent evidence that the hippocampus and the adjacent white matter tract (i.e., fornix) supported relational memory, whereas the ventromedial pFC/OFC (vmPFC/OFC) and the white matter tract connecting vmPFC/OFC to MTL (i.e., uncinate fasciculus) supported memory-guided rule use. Together, these data suggest that MTL and pFC structures differentially contribute to and support contextually guided relational memory.


2018 ◽  
Author(s):  
Nicole S. McKay ◽  
David. Moreau ◽  
Dion T. Henare ◽  
Ian J. Kirk

AbstractA single nucleotide polymorphism (SNP) in the gene coding for brain-derived neurotrophic factor (BDNF) has previously been associated with a reduction in recognition memory performance. While previous findings have highlighted that this SNP contributes to recognition memory, little is known about its influence on subprocesses of recognition, familiarity and recollection. Previous research has reported reduced hippocampal volume and decreased fractional anisotropy in carriers of the Met allele across a range of white matter tracts, including those networks that may support recognition memory. Here, in a sample of 61 healthy young adults, we used a source memory task to measure accuracy on each recognition subprocess, in order to determine whether the Val66Met SNP (rs6265) influences these equally. Additionally, we compared grey matter volume between these groups for structures that underpin familiarity and recollection separately. Finally, we used probabilistic tractography to reconstruct tracts that subserve each of these two recognition systems. Behaviourally, we found group differences on the familiarity measure, but not on recollection. However, we did not find any group difference on grey- or white-matter structures. Together, these results suggest a functional influence of the Val66Met SNP that is independent of coarse structural changes, and nuance previous research highlighting the relationship between BDNF, brain structure, and behaviour.


2009 ◽  
Vol 21 (2) ◽  
pp. 67-74 ◽  
Author(s):  
Stefan Begré ◽  
Claus Kiefer ◽  
Roland von Känel ◽  
Angela Frommer ◽  
Andrea Federspiel

Objective:Studies exploring relation of visual memory to white matter are extensively lacking. The Rey Visual Design Learning Test (RVDLT) is an elementary motion, colour and word independent visual memory test. It avoids a significant contribution from as many additional higher order visual brain functions as possible to visual performance, such as three-dimensional, colour, motion or word-dependent brain operations. Based on previous results, we hypothesised that test performance would be related with white matter of dorsal hippocampal commissure, corpus callosum, posterior cingulate, superior longitudinal fascicle and internal capsule.Methods:In 14 healthy subjects, we measured intervoxel coherence (IC) by diffusion tensor imaging as an indication of connectivity and visual memory performance measured by the RVDLT. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index.Results:Using voxelwise linear regression analyses of the IC values, we found a significant and direct relationship between 11 clusters and visual memory test performance. The fact that memory performance correlated with white matter structure in left and right dorsal hippocampal commissure, left and right posterior cingulate, right callosal splenium, left and right superior longitudinal fascicle, right medial orbitofrontal region, left anterior cingulate, and left and right anterior limb of internal capsule emphasises our hypothesis.Conclusion:Our observations in healthy subjects suggest that individual differences in brain function related to the performance of a task of higher cognitive demands might partially be associated with structural variation of white matter regions.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Allen A Champagne ◽  
Emile Peponoulas ◽  
Itamar Terem ◽  
Andrew Ross ◽  
Maryam Tayebi ◽  
...  

Abstract Increasing evidence for the cumulative effects of head trauma on structural integrity of the brain has emphasized the need to understand the relationship between tissue mechanic properties and injury susceptibility. Here, diffusion tensor imaging, helmet accelerometers and amplified magnetic resonance imaging were combined to gather insight about the region-specific vulnerability of the corpus callosum to microstructural changes in white-matter integrity upon exposure to sub-concussive impacts. A total of 33 male Canadian football players (meanage = 20.3 ± 1.4 years) were assessed at three time points during a football season (baseline pre-season, mid-season and post-season). The athletes were split into a LOW (N = 16) and HIGH (N = 17) exposure group based on the frequency of sub-concussive impacts sustained on a per-session basis, measured using the helmet-mounted accelerometers. Longitudinal decreases in fractional anisotropy were observed in anterior and posterior regions of the corpus callosum (average cluster size = 40.0 ± 4.4 voxels; P < 0.05, corrected) for athletes from the HIGH exposure group. These results suggest that the white-matter tract may be vulnerable to repetitive sub-concussive collisions sustained over the course of a football season. Using these findings as a basis for further investigation, a novel exploratory analysis of strain derived from sub-voxel motion of brain tissues in response to cardiac impulses was developed using amplified magnetic resonance imaging. This approach revealed specific differences in strain (and thus possibly stiffness) along the white-matter tract (P < 0.0001) suggesting a possible signature relationship between changes in white-matter integrity and tissue mechanical properties. In light of these findings, additional information about the viscoelastic behaviour of white-matter tissues may be imperative in elucidating the mechanisms responsible for region-specific differences in injury susceptibility observed, for instance, through changes in microstructural integrity following exposure to sub-concussive head impacts.


NeuroImage ◽  
2004 ◽  
Vol 22 (3) ◽  
pp. 1302-1314 ◽  
Author(s):  
Savannah C Partridge ◽  
Pratik Mukherjee ◽  
Roland G Henry ◽  
Steven P Miller ◽  
Jeffrey I Berman ◽  
...  

2003 ◽  
Vol 58 (6) ◽  
pp. 455-462 ◽  
Author(s):  
S.J. Price ◽  
N.G. Burnet ◽  
T. Donovan ◽  
H.A.L. Green ◽  
A. Peña ◽  
...  

2019 ◽  
Vol 35 (1) ◽  
pp. 10-21 ◽  
Author(s):  
Megan M Kangiser ◽  
Alicia M Thomas ◽  
Christine M Kaiver ◽  
Krista M Lisdahl

Abstract Objective Nicotine use is widely prevalent among youth, and is associated with white matter microstructural changes as measured by diffusion tensor imaging (DTI). In adults, nicotine use is generally associated with lower fractional anisotropy (FA), but in adolescents/young adults (≤30 years), microstructure appears healthier, indicated by higher FA. This cross-sectional study examined associations between nicotine use and white matter microstructure using fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in young adults. Methods Fifty-three participants (18 nicotine users [10 female]/35 controls [17 female]) ages 18–25 underwent MRI scan, neuropsychological battery, toxicology screening, and drug use interview. Nicotine group associations with FA and MD were examined in various white matter tracts. In significant tracts, AD and RD were measured. Exploratory correlations were conducted between significant tracts and verbal memory and sustained attention/working memory performance. Results Nicotine users exhibited significantly lower FA than controls in the left anterior thalamic radiation, left inferior longitudinal fasciculus, left superior longitudinal fasciculus—temporal, and left uncinate fasciculus. In these tracts, AD and RD did not differ, nor did MD differ in any tract. White matter quality was positively correlated with sustained attention/working memory performance. Conclusions Cigarette smoking may disrupt white matter microstructure. These results are consistent with adult studies, but inconsistent with adolescent/young adult studies, likely due to methodological and sample age differences. Further studies should examine longitudinal effects of nicotine use on white matter microstructure in a larger sample.


Cephalalgia ◽  
2015 ◽  
Vol 35 (13) ◽  
pp. 1162-1171 ◽  
Author(s):  
Catherine D Chong ◽  
Todd J Schwedt

Background Specific white-matter tract alterations in migraine remain to be elucidated. Using diffusion tensor imaging (DTI), this study investigated whether the integrity of white-matter tracts that underlie regions of the “pain matrix” is altered in migraine and interrogated whether the number of years lived with migraine modifies fibertract structure. Methods Global probabilistic tractography was used to assess the anterior thalamic radiations, the corticospinal tracts and the inferior longitudinal fasciculi in 23 adults with migraine and 18 healthy controls. Results Migraine patients show greater mean diffusivity (MD) in the left and right anterior thalamic radiations, the left corticospinal tract, and the right inferior longitudinal fasciculus tract. Migraine patients also show greater radial diffusivity (RD) in the left anterior thalamic radiations, the left corticospinal tract as well as the left and right inferior longitudinal fasciculus tracts. No group fractional anisotropy (FA) differences were identified for any tracts. Migraineurs showed a positive correlation between years lived with migraine and MD in the right anterior thalamic radiations ( r = 0.517; p = 0.012) and the left corticospinal tract ( r = 0.468; p = 0.024). Conclusion Results indicate that white-matter integrity is altered in migraine and that longer migraine history is positively correlated with greater alterations in tract integrity.


Sign in / Sign up

Export Citation Format

Share Document