scholarly journals Effects of Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype

2020 ◽  
Vol 32 (5) ◽  
pp. 804-821 ◽  
Author(s):  
Daniella J. Furman ◽  
Robert L. White ◽  
Jenna Naskolnakorn ◽  
Jean Ye ◽  
Andrew Kayser ◽  
...  

Dopamine (DA) has been implicated in modulating multiple cognitive control processes, including the robust maintenance of task sets and memoranda in the face of distractors (cognitive stability) and, conversely, the ability to switch task sets or update the contents of working memory when it is advantageous to do so (cognitive flexibility). In humans, the limited specificity of available pharmacological probes has posed a challenge for understanding the mechanisms by which DA, acting on multiple receptor families across the PFC and striatum, differentially influences these cognitive processes. Using a within-subject, placebo-controlled design, we contrasted the impact of two mechanistically distinct DA drugs, tolcapone (an inhibitor of catechol- O-methyltransferase [COMT], a catecholamine inactivator) and bromocriptine (a DA agonist with preferential affinity for the D2 receptor), on the maintenance and switching of task rules. Given previous work demonstrating that drug effects on behavior are dependent on baseline DA tone, participants were stratified according to genetic polymorphisms associated with cortical (COMT Val158Met) and striatal (Taq1A) DA system function. Our results were partially consistent with an inverted-U-shaped relationship between tolcapone and robust rule maintenance (interaction with COMT genotype) and between bromocriptine and cued rule switching (interaction with Taq1A genotype). However, when task instructions were ambiguous, a third relationship emerged to explain drug effects on spontaneous task switching (interaction of COMT genotype and bromocriptine). Together, this pattern of results suggests that the effects of DA drugs vary not only as a function of the DA system component upon which they act but also on subtle differences in task demands and context.

2021 ◽  
Author(s):  
Alberto Sobrado ◽  
Ana F. Palenciano ◽  
Carlos González-García ◽  
María Ruz

AbstractVerbal instructions allow fast and optimal implementation of novel behaviors. Previous research has shown that different control-related variables organize neural activity in frontoparietal regions during the preparation of novel instructed task sets. Little is known, however, about how such variables organize brain activity under different task demands. In this study, we assessed the impact of implementation and memorization demands in the neural representation of novel instructions. We combined functional Magnetic Resonance Imaging (fMRI) with an instruction-following paradigm to compare the effect of three relevant control-related variables (integration of dimensions, response complexity, and stimulus category) across demands, and to explore the degree of overlap between these. Our results reveal, first, that the implementation and memorization of novel instructions share common neural patterns in several brain regions. Importantly, they also suggest that the preparation to implement instructions results in a strengthened coding of relevant control-related information in frontoparietal areas compared to their mere memorization. Overall, our study shows how the content of novel instructions proactively shapes brain activity based on multiple dimensions and how these organizational patterns are strengthened during implementation demands.


Author(s):  
Stefan Scherbaum ◽  
Simon Frisch ◽  
Maja Dshemuchadse

Abstract. Folk wisdom tells us that additional time to make a decision helps us to refrain from the first impulse to take the bird in the hand. However, the question why the time to decide plays an important role is still unanswered. Here we distinguish two explanations, one based on a bias in value accumulation that has to be overcome with time, the other based on cognitive control processes that need time to set in. In an intertemporal decision task, we use mouse tracking to study participants’ responses to options’ values and delays which were presented sequentially. We find that the information about options’ delays does indeed lead to an immediate bias that is controlled afterwards, matching the prediction of control processes needed to counter initial impulses. Hence, by using a dynamic measure, we provide insight into the processes underlying short-term oriented choices in intertemporal decision making.


2017 ◽  
pp. 111-140 ◽  
Author(s):  
R. Kapeliushnikov

The paper provides a critical analysis of the idea of technological unemployment. The overview of the existing literature on the employment effects of technological change shows that on the micro-level there exists strong and positive relationship between innovations and employment growth in firms; on the sectoral level this correlation becomes ambiguous; on the macro-level the impact of new technologies seems to be positive or neutral. This implies that fears of explosive growth of technological unemployment in the foreseeable future are exaggerated. Our analysis further suggests that new technologies affect mostly the structure of employment rather than its level. Additionally we argue that automation and digitalisation would change mostly task sets within particular occupations rather than distribution of workers by occupations.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A18-A19
Author(s):  
Molly Zimmerman ◽  
Christiane Hale ◽  
Adam Brickman ◽  
Lok-Kin Yeung ◽  
Justin Cochran ◽  
...  

Abstract Introduction Sleep loss has a range of detrimental effects on cognitive ability. However, few studies have examined the impact of sleep restriction on neuropsychological function using an experimental design. The goal of this study was to examine the extent to which maintained insufficient sleep affects cognition in healthy adults compared to habitual adequate sleep. Methods This study used a randomized, crossover, outpatient sleep restriction design. Adults who regularly slept at least 7 h/night, verified by 2 weeks of screening with actigraphy, completed 2 phases of 6 weeks each: habitual sleep (>7 h of sleep/night) or sleep restriction (habitual sleep minus 1.5 h) separated by a 6-week washout period. During the sleep restriction phase, participants were asked to delay their bedtime by 1.5 hours/night while maintaining their habitual wake time. Neuropsychological function was evaluated with the NIH Toolbox Cognition Battery at baseline (week 0) and endpoint (week 6) of each intervention phase. The NIH Toolbox evaluates a range of cognitive abilities, including attention, executive functioning, and working memory. General linear models with post hoc paired t-tests were used to assess demographically-adjusted test scores prior to and following each sleep condition. Results At the time of analyses, 16 participants were enrolled (age 34.5□14.5 years, 9 women), 10 of whom had completed study procedures. An interaction between sleep condition and testing session revealed that individuals performed worse on List Sorting, a working memory test, after sleep restriction but improved slightly after habitual sleep (p<0.001). While not statistically reliable, the pattern of test results was similar on the other tests of processing speed, executive function, and attention. Conclusion In these preliminary results from this randomized experimental study, we demonstrated that sleep restriction has a negative impact while stable habitual adequate sleep has a positive impact on working memory, or the ability to temporarily hold information in mind while executing task demands. This finding contributes to our understanding of the complex interplay between different aspects of sleep quality (i.e., both sleep restriction as well as the maintenance of stable sleep patterns) on cognition and underscores the importance of routine sleep screening as part of medical evaluations. Support (if any):


Author(s):  
Joseph F. McGuire ◽  
Alexandra Sturm ◽  
Emily J. Ricketts ◽  
Gabrielle E. Montalbano ◽  
Susanna Chang ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


2021 ◽  
Author(s):  
Moritz J. Maier ◽  
David Rosenbaum ◽  
Martin Brüne ◽  
Andreas J. Fallgatter ◽  
Ann‐Christine Ehlis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document