Tracking the Effects of Top–Down Attention on Word Discrimination Using Frequency-tagged Neuromagnetic Responses

2020 ◽  
Vol 32 (5) ◽  
pp. 877-888
Author(s):  
Maxime Niesen ◽  
Marc Vander Ghinst ◽  
Mathieu Bourguignon ◽  
Vincent Wens ◽  
Julie Bertels ◽  
...  

Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top–down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.

2008 ◽  
Vol 20 (3) ◽  
pp. 541-552 ◽  
Author(s):  
Eveline Geiser ◽  
Tino Zaehle ◽  
Lutz Jancke ◽  
Martin Meyer

The present study investigates the neural correlates of rhythm processing in speech perception. German pseudosentences spoken with an exaggerated (isochronous) or a conversational (nonisochronous) rhythm were compared in an auditory functional magnetic resonance imaging experiment. The subjects had to perform either a rhythm task (explicit rhythm processing) or a prosody task (implicit rhythm processing). The study revealed bilateral activation in the supplementary motor area (SMA), extending into the cingulate gyrus, and in the insulae, extending into the right basal ganglia (neostriatum), as well as activity in the right inferior frontal gyrus (IFG) related to the performance of the rhythm task. A direct contrast between isochronous and nonisochronous sentences revealed differences in lateralization of activation for isochronous processing as a function of the explicit and implicit tasks. Explicit processing revealed activation in the right posterior superior temporal gyrus (pSTG), the right supramarginal gyrus, and the right parietal operculum. Implicit processing showed activation in the left supramarginal gyrus, the left pSTG, and the left parietal operculum. The present results indicate a function of the SMA and the insula beyond motor timing and speak for a role of these brain areas in the perception of acoustically temporal intervals. Secondly, the data speak for a specific task-related function of the right IFG in the processing of accent patterns. Finally, the data sustain the assumption that the right secondary auditory cortex is involved in the explicit perception of auditory suprasegmental cues and, moreover, that activity in the right secondary auditory cortex can be modulated by top-down processing mechanisms.


2011 ◽  
Vol 204-210 ◽  
pp. 5-10
Author(s):  
Qiang Li ◽  
Suang Xia ◽  
Fei Zhao

Using functional magnetic resonance imaging (fMRI), to observe the changes of cerebral functional cortex in prelingual deaf singers for Chinese sign language(CSL). Results:During observing and imitating CSL, the activated areas in all groups include bilateral middle frontal gyrus, middle temporal gyrus, superior parietal lobule, cuneate lobe, fusiform gyrus and lingual gurus. The activation of bilateral inferior frontal gyrus were found in groupⅠ, Ⅲ and Ⅳ, but no activation in groupⅡ. The activation of bilateral superior temporal gyrus and inferior parietal lobule were found in groupⅠand Ⅲ, but no activation in others. The volumes of bilateral inferior frontal gyrus in groupⅠwere greater than those in group Ⅲ and Ⅳ. The volumes of bilateral superior temporal gyrus in groupⅠwere greater than those in group Ⅲ. Conclusion:The cortex in PDS had occurred reorganization, after losing their auditory and learning the CSL. The activation of linguistic cortex can be found during oberserving and imitating CSL in PDS. The secondary auditory cortex and association area turn to take part in processing visual language when no auditory afference, whereas the primary auditory cortex do not participate the reorganization. Additionally, the visual cortex of PDS is more sensitive than that of normal heaing individuals.


2006 ◽  
Vol 18 (11) ◽  
pp. 1789-1798 ◽  
Author(s):  
Angela Bartolo ◽  
Francesca Benuzzi ◽  
Luca Nocetti ◽  
Patrizia Baraldi ◽  
Paolo Nichelli

Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81–100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157–166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.


2018 ◽  
Author(s):  
Arafat Angulo-Perkins ◽  
Luis Concha

ABSTRACT Musicality refers to specific biological traits that allow us to perceive, generate and enjoy music. These abilities can be studied at different organizational levels (e.g., behavioural, physiological, evolutionary), and all of them reflect that music and speech processing are two different cognitive domains. Previous research has shown evidence of this functional divergence in auditory cortical regions in the superior temporal gyrus (such as the planum polare), showing increased activity upon listening to music, as compared to other complex acoustic signals. Here, we examine brain activity underlying vocal music and speech perception, while we compare musicians and non-musicians. We designed a stimulation paradigm using the same voice to produce spoken sentences, hummed melodies, and sung sentences; the same sentences were used in speech and song categories, and the same melodies were used in the musical categories (song and hum). Participants listened to this paradigm while we acquired functional magnetic resonance images (fMRI). Different analyses demonstrated greater involvement of specific auditory and motor regions during music perception, as compared to speech vocalizations. This music sensitive network includes bilateral activation of the planum polare and temporale, as well as a group of regions lateralized to the right hemisphere that included the supplementary motor area, premotor cortex and the inferior frontal gyrus. Our results show that the simple act of listening to music generates stronger activation of motor regions, possibly preparing us to move following the beat. Vocal musical listening, with and without lyrics, is also accompanied by a higher modulation of specific secondary auditory cortices such as the planum polare, confirming its crucial role in music processing independently of previous musical training. This study provides more evidence showing that music perception enhances audio-sensorimotor activity, crucial for clinical approaches exploring music based therapies to improve communicative and motor skills.


2020 ◽  
Vol 32 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Jin Wang ◽  
Mabel L. Rice ◽  
James R. Booth

Previous studies have found specialized syntactic and semantic processes in the adult brain during language comprehension. Young children have sophisticated semantic and syntactic aspects of language, yet many previous fMRI studies failed to detect this specialization, possibly due to experimental design and analytical methods. In this current study, 5- to 6-year-old children completed a syntactic task and a semantic task to dissociate these two processes. Multivoxel pattern analysis was used to examine the correlation of patterns within a task (between runs) or across tasks. We found that the left middle temporal gyrus showed more similar patterns within the semantic task compared with across tasks, whereas there was no difference in the correlation within the syntactic task compared with across tasks, suggesting its specialization in semantic processing. Moreover, the left superior temporal gyrus showed more similar patterns within both the semantic task and the syntactic task as compared with across tasks, suggesting its role in integration of semantic and syntactic information. In contrast to the temporal lobe, we did not find specialization or integration effects in either the opercular or triangular part of the inferior frontal gyrus. Overall, our study showed that 5- to 6-year-old children have already developed specialization and integration in the temporal lobe, but not in the frontal lobe, consistent with developmental neurocognitive models of language comprehension in typically developing young children.


2015 ◽  
Vol 122 (2) ◽  
pp. 250-261 ◽  
Author(s):  
Edward F. Chang ◽  
Kunal P. Raygor ◽  
Mitchel S. Berger

Classic models of language organization posited that separate motor and sensory language foci existed in the inferior frontal gyrus (Broca's area) and superior temporal gyrus (Wernicke's area), respectively, and that connections between these sites (arcuate fasciculus) allowed for auditory-motor interaction. These theories have predominated for more than a century, but advances in neuroimaging and stimulation mapping have provided a more detailed description of the functional neuroanatomy of language. New insights have shaped modern network-based models of speech processing composed of parallel and interconnected streams involving both cortical and subcortical areas. Recent models emphasize processing in “dorsal” and “ventral” pathways, mediating phonological and semantic processing, respectively. Phonological processing occurs along a dorsal pathway, from the posterosuperior temporal to the inferior frontal cortices. On the other hand, semantic information is carried in a ventral pathway that runs from the temporal pole to the basal occipitotemporal cortex, with anterior connections. Functional MRI has poor positive predictive value in determining critical language sites and should only be used as an adjunct for preoperative planning. Cortical and subcortical mapping should be used to define functional resection boundaries in eloquent areas and remains the clinical gold standard. In tracing the historical advancements in our understanding of speech processing, the authors hope to not only provide practicing neurosurgeons with additional information that will aid in surgical planning and prevent postoperative morbidity, but also underscore the fact that neurosurgeons are in a unique position to further advance our understanding of the anatomy and functional organization of language.


2018 ◽  
Author(s):  
Anna Dora Manca ◽  
Francesco Di Russo ◽  
Francesco Sigona ◽  
Mirko Grimaldi

How the brain encodes the speech acoustic signal into phonological representations (distinctive features) is a fundamental question for the neurobiology of language. Whether this process is characterized by tonotopic maps in primary or secondary auditory areas, with bilateral or leftward activity, remains a long-standing challenge. Magnetoencephalographic and ECoG studies have previously failed to show hierarchical and asymmetric hints for speech processing. We employed high-density electroencephalography to map the Salento Italian vowel system onto cortical sources using the N1 auditory evoked component. We found evidence that the N1 is characterized by hierarchical and asymmetric indexes structuring vowels representation. We identified them with two N1 subcomponents: the typical N1 (N1a) peaking at 125-135 ms and localized in the primary auditory cortex bilaterally with a tangential distribution and a late phase of the N1 (N1b) peaking at 145-155 ms and localized in the left superior temporal gyrus with a radial distribution. Notably, we showed that the processing of distinctive feature representations begins early in the primary auditory cortex and carries on in the superior temporal gyrus along lateral-medial, anterior-posterior and inferior-superior gradients. It is the dynamical interface of both auditory cortices and the interaction effects between different distinctive features that generate the categorical representations of vowels.


2020 ◽  
Author(s):  
Soheila Samiee ◽  
Dominique Vuvan ◽  
Esther Florin ◽  
Philippe Albouy ◽  
Isabelle Peretz ◽  
...  

AbstractThe detection of pitch changes is crucial to sound localization, music appreciation and speech comprehension, yet the brain network oscillatory dynamics involved remain unclear. We used time-resolved cortical imaging in a pitch change detection task. Tone sequences were presented to both typical listeners and participants affected with congenital amusia, as a model of altered pitch change perception.Our data show that tone sequences entrained slow (2-4 Hz) oscillations in the auditory cortex and inferior frontal gyrus, at the pace of tone presentations. Inter-regional signaling at this slow pace was directed from auditory cortex towards the inferior frontal gyrus and motor cortex. Bursts of faster (15-35Hz) oscillations were also generated in these regions, with directed influence from the motor cortex. These faster components occurred precisely at the expected latencies of each tone in a sequence, yielding a form of local phase-amplitude coupling with slower concurrent activity. The intensity of this coupling peaked dynamically at the moment of anticipated pitch changes.We clarify the mechanistic relevance of these observations in relation to behavior as, by task design, typical listeners outperformed amusic participants. Compared to typical listeners, inter-regional slow signaling toward motor and inferior frontal cortices was depressed in amusia. Also, the auditory cortex of amusic participants over-expressed tonic, fast-slow phase-amplitude coupling, pointing at a possible misalignment between stimulus encoding and internal predictive signaling. Our study provides novel insight into the functional architecture of polyrhythmic brain activity in auditory perception and emphasizes active, network processes involving the motor system in sensory integration.


2021 ◽  
Author(s):  
Yoshiharu Ikutani ◽  
Takeshi D. Itoh ◽  
Takatomi Kubo

AbstractThe understanding of brain activity during program comprehension have advanced thanks to noninvasive neuroimaging techniques, such as functional magnetic resonance imaging (fMRI). However, individual neuroimaging studies of program comprehension often provided inconsistent results and made it difficult to identify the neural bases. To identify the essential brain regions, this study performed a small meta-analysis on recent fMRI studies of program comprehension using multilevel kernel density analysis (MKDA). Our analysis identified a set of brain regions consistently activated in various program comprehension tasks. These regions consisted of three clusters, each of which centered at the left inferior frontal gyrus pars triangularis (IFG Tri), posterior part of middle temporal gyrus (pMTG), and right middle frontal gyrus (MFG). Additionally, subsequent analyses revealed relationships among the activation patterns in the previous studies and multiple cognitive functions. These findings suggest that program comprehension mainly recycles the language-related networks and partially employs other domain-general resources in the human brain.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher N. Cascio ◽  
Nina Lauharatanahirun ◽  
Gwendolyn M. Lawson ◽  
Martha J. Farah ◽  
Emily B. Falk

AbstractResponse inhibition and socioeconomic status (SES) are critical predictors of many important outcomes, including educational attainment and health. The current study extends our understanding of SES and cognition by examining brain activity associated with response inhibition, during the key developmental period of adolescence. Adolescent males (N = 81), aged 16–17, completed a response inhibition task while undergoing fMRI brain imaging and reported on their parents’ education, one component of socioeconomic status. A region of interest analysis showed that parental education was associated with brain activation differences in the classic response inhibition network (right inferior frontal gyrus + subthalamic nucleus + globus pallidus) despite the absence of consistent parental education-performance effects. Further, although activity in our main regions of interest was not associated with performance differences, several regions that were associated with better inhibitory performance (ventromedial prefrontal cortex, middle frontal gyrus, middle temporal gyrus, amygdala/hippocampus) also differed in their levels of activation according to parental education. Taken together, these results suggest that individuals from households with higher versus lower parental education engage key brain regions involved in response inhibition to differing degrees, though these differences may not translate into performance differences.


Sign in / Sign up

Export Citation Format

Share Document