The Happy Valley Band: Creative (Mis)Transcription

2016 ◽  
Vol 26 ◽  
pp. 76-78
Author(s):  
David Kant

In the author’s work as a composer, he explores how state-of-the-art digital sound analysis can change how we listen to music. The Happy Valley Band (HVB) is a product of this exploration and encompasses a repertoire of microtonal deconstructions of pop songs, an open-source software suite and a dedicated performing ensemble. This article documents the author’s experience and artistic practice within this project—a process of translation between digital analysis, human listening and written notation, in which a machine-learning algorithm is trained to hear pop songs and the results of the machine-learning process are transcribed into musical notation and performed by instrumentalists.

2020 ◽  
Vol 222 (3) ◽  
pp. 1750-1764 ◽  
Author(s):  
Yangkang Chen

SUMMARY Effective and efficient arrival picking plays an important role in microseismic and earthquake data processing and imaging. Widely used short-term-average long-term-average ratio (STA/LTA) based arrival picking algorithms suffer from the sensitivity to moderate-to-strong random ambient noise. To make the state-of-the-art arrival picking approaches effective, microseismic data need to be first pre-processed, for example, removing sufficient amount of noise, and second analysed by arrival pickers. To conquer the noise issue in arrival picking for weak microseismic or earthquake event, I leverage the machine learning techniques to help recognizing seismic waveforms in microseismic or earthquake data. Because of the dependency of supervised machine learning algorithm on large volume of well-designed training data, I utilize an unsupervised machine learning algorithm to help cluster the time samples into two groups, that is, waveform points and non-waveform points. The fuzzy clustering algorithm has been demonstrated to be effective for such purpose. A group of synthetic, real microseismic and earthquake data sets with different levels of complexity show that the proposed method is much more robust than the state-of-the-art STA/LTA method in picking microseismic events, even in the case of moderately strong background noise.


2020 ◽  
Author(s):  
Roman Stolyarov ◽  
Matt Carney ◽  
Hugh Herr

This study describes the development and offline validation of a heuristic algorithm for accurate prediction of ground terrain in a lower limb prosthesis. This method is based on inference of the ground terrain geometry using estimation of prosthetic limb kinematics during gait with a single integrated inertial measurement unit. We asked five subjects with below-knee amputations to traverse level ground, stairs, and ramps using a high-range-of-motion powered prosthesis while internal sensor data were remotely logged. We used these data to develop two terrain prediction algorithms. The first employed a state-of-the-art machine learning approach, while the second was a directly tuned heuristic using thresholds on estimated prosthetic ankle joint translations and ground slope. We compared the performance of these algorithms using resubstitution error for the machine learning algorithm and overall error for the heuristic algorithm. Our optimal machine learning algorithm attained a resubstitution error of $3.4\%$ using 45 features, while our heuristic method attained an overall prediction error of $2.8\%$ using only 5 features derived from estimation of ground slope and horizontal and vertical ankle joint displacement. Compared with pattern recognition, the heuristic performed better on each individual subject, and across both level and non-level strides. These results demonstrate a method for heuristic prediction of ground terrain in a powered prosthesis. The method is more accurate, more interpretable, and less computationally expensive than state-of-the-art machine learning methods, and relies only on integrated prosthesis sensors. Finally, the method provides intuitively tunable thresholds to improve performance for specific walking conditions.


2018 ◽  
Author(s):  
C.H.B. van Niftrik ◽  
F. van der Wouden ◽  
V. Staartjes ◽  
J. Fierstra ◽  
M. Stienen ◽  
...  

Author(s):  
Kunal Parikh ◽  
Tanvi Makadia ◽  
Harshil Patel

Dengue is unquestionably one of the biggest health concerns in India and for many other developing countries. Unfortunately, many people have lost their lives because of it. Every year, approximately 390 million dengue infections occur around the world among which 500,000 people are seriously infected and 25,000 people have died annually. Many factors could cause dengue such as temperature, humidity, precipitation, inadequate public health, and many others. In this paper, we are proposing a method to perform predictive analytics on dengue’s dataset using KNN: a machine-learning algorithm. This analysis would help in the prediction of future cases and we could save the lives of many.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


Sign in / Sign up

Export Citation Format

Share Document