The Importance of Vision in Agonistic Communication of the Crayfish Orconectes Rusticus. I: an Analysis of Bout Dynamics

Behaviour ◽  
1987 ◽  
Vol 103 (1-3) ◽  
pp. 83-107 ◽  
Author(s):  
Colleen Ann Bruski ◽  
D.W. Dunham

Abstract1. The importance of vision for efficient agonistic communication was investigated in the rusty crayfish, Orconectes rusticus, a species active both day and night. Agonistic bout dynamics were analyzed from isosexual pairs of males and females interacting under moderate (350 lux) and dim (11 lux) light levels, and in complete darkness (using infra-red video recording). Under dim light we determined the effect of visual light and dark adaptation on communication. 2. As light diminished, bouts became less frequent, but longer, and the crayfish invested more time and performed more acts when resolving bouts. Thus, communication efficiency was clearly lower in the dark than under moderate light, for both sexes. Males performed more acts than females overall, and were generally more aggressive than females. 3. The frequency of visually-mediated behaviours (e.g. Lunge, Follow) decreased in the absence oflight, while tactile behaviours (e.g. Antenna Tap, Chela Strike, Push) were performed more frequently. Males especially performed more highly aggressive tactile behaviours in the dark. It was shown that some behaviours previously considered to be visually mediated (e.g. Meral Spread) are also tactually or proprioceptively mediated, and some behaviours assumed to be tactually mediated (e.g. antennal movements) are probably also visually mediated. 4. Under dim light, crayfish with light-adapted eyes resolve bouts more efficiently in terms of time and energy investment than do dark-adapted animals. This is consistent with the effects of pigment migrations during dark adaptation in the crayfish superposition compound eye, which enhance visual sensitivity, but decrease acuity. We suggest that dark adaptation diminishes a crayfishes ability to deal with the subtleties of visual communication, but may well enhance its ability to detect predators.

2020 ◽  
Vol 130 (3) ◽  
pp. 533-544
Author(s):  
Beryl M Jones ◽  
Brett M Seymoure ◽  
Troy J Comi ◽  
Ellis R Loew

Abstract Visually dependent dim-light foraging has evolved repeatedly, broadening the ecological niches of some species. Many dim-light foraging lineages evolved from diurnal ancestors, requiring immense visual sensitivity increases to compensate for light levels a billion times dimmer than daylight. Some taxa, such as bees, are anatomically constrained by apposition compound eyes, which function well in daylight but not in starlight. Even with this constraint, the bee genus Megalopta has incredibly sensitive eyes, foraging in light levels up to nine orders of magnitude dimmer than diurnal relatives. Despite many behavioural studies, variation in visual sensitivity and eye morphometry has not been investigated within and across Megalopta species. Here we quantify external eye morphology (corneal area and facet size) for sympatric species of Megalopta, M. genalis and M. amoena, which forage during twilight. We use electroretinograms to show that males, despite being smaller than females, have equivalent visual sensitivity and increased retinal responsivity. Although males have relatively larger eyes compared with females, corneal area and facet size were not correlated with retinal responsivity, suggesting that males have additional non-morphological adaptations to increase retinal responsiveness. These findings provide the foundation for future work into the neural and physiological mechanisms that interface with morphology to influence visual sensitivity, with implications for understanding niche exploitation.


1990 ◽  
Vol 45 (1-2) ◽  
pp. 137-142 ◽  
Author(s):  
Eric J. Warrant ◽  
Robert B. Pinter

Abstract Intracellular recordings of angular sensitivity from the photoreceptors of Aeschnid dragonflies (Hemianax papuensis and Aeschna brevistyla) are used to determine the magnitude and time course of acuity changes following alterations of the state of light or dark adaptation. Acuity is defined on the basis of the acceptance angle, Δρ (the half-width of the angular-sensitivity function). The maximally light-adapted value of Δρ is half the dark-adapted value, indicating greater acuity during light adaptation. Following a change from light to dark adaptation, Δρ increases slowly, requiring at least 3 min to reach its dark-adapted value. In contrast, the reverse change (dark to light) induces a rapid reduction of Δρ , and at maximal adapting luminances, this reduction takes place in less than 10 sec.


2004 ◽  
Vol 21 (6) ◽  
pp. 925-934 ◽  
Author(s):  
GERARD H. DALY ◽  
JESSICA M. DILEONARDO ◽  
NATALIE R. BALKEMA ◽  
GRANT W. BALKEMA

Significant variation in absolute dark-adapted thresholds is observed both within and between strains of mice with differing ocular pigmentation levels. Differences in threshold within a single strain are related to the Williams' photostasis effect, that is, photoreceptor rhodopsin levels are dependent upon ambient lighting conditions. To examine threshold differences among strains, we equalized rhodopsin levels by maintaining albino mice (c2J/c2J) at 2 × 10−4 cd/m2 (dim light) and black mice at 2 × 102 cd/m2 (bright light). This resulted in ocular rhodopsin levels for albino mice (albino—dim) of 494 ± 11 pmoles/eye and rhodopsin levels for black mice (black—bright) of 506 ± 25 pmoles/eye. For comparison, rhodopsin levels in black mice maintained in dim light are 586 ± 46 pmoles/eye and 217 ± 46 pmoles/eye in albino mice maintained in bright light. We found similar dark-adapted thresholds (6.38 log cd/m2vs. 6.47 log cd/m2)) in albino and black mice with equivalent rhodopsin determined with a water maze test. This suggests that dark-adapted thresholds are directly related to rhodopsin levels regardless of the level of ocular melanin. The number of photoreceptors, photoreceptor layer thickness, and outer segment length did not differ significantly between albino (dark) and black mice (bright). These results demonstrate that the visual sensitivity defect found in hypopigmented animals is secondary to abnormal rhodopsin regulation and that hypopigmented animals have either an improper input to the photostasis mechanism or that the photostasis mechanism is defective.


2017 ◽  
Vol 372 (1717) ◽  
pp. 20160063 ◽  
Author(s):  
Eric J. Warrant

Nocturnal insects have evolved remarkable visual capacities, despite small eyes and tiny brains. They can see colour, control flight and land, react to faint movements in their environment, navigate using dim celestial cues and find their way home after a long and tortuous foraging trip using learned visual landmarks. These impressive visual abilities occur at light levels when only a trickle of photons are being absorbed by each photoreceptor, begging the question of how the visual system nonetheless generates the reliable signals needed to steer behaviour. In this review, I attempt to provide an answer to this question. Part of the answer lies in their compound eyes, which maximize light capture. Part lies in the slow responses and high gains of their photoreceptors, which improve the reliability of visual signals. And a very large part lies in the spatial and temporal summation of these signals in the optic lobe, a strategy that substantially enhances contrast sensitivity in dim light and allows nocturnal insects to see a brighter world, albeit a slower and coarser one. What is abundantly clear, however, is that during their evolution insects have overcome several serious potential visual limitations, endowing them with truly extraordinary night vision. This article is part of the themed issue ‘Vision in dim light’.


2017 ◽  
Vol 372 (1717) ◽  
pp. 20160067 ◽  
Author(s):  
Thomas W. Cronin ◽  
Jeffry I. Fasick ◽  
Lorian E. Schweikert ◽  
Sönke Johnsen ◽  
Lorren J. Kezmoh ◽  
...  

North Atlantic right whales ( Eubalaena glacialis ) feed during the spring and early summer in marine waters off the northeast coast of North America. Their food primarily consists of planktonic copepods, Calanus finmarchicus , which they consume in large numbers by ram filter feeding. The coastal waters where these whales forage are turbid, but they successfully locate copepod swarms during the day at depths exceeding 100 m, where light is very dim and copepod patches may be difficult to see. Using models of E. glacialis visual sensitivity together with measurements of light in waters near Cape Cod where they feed and of light attenuation by living copepods in seawater, we evaluated the potential for visual foraging by these whales. Our results suggest that vision may be useful for finding copepod patches, particularly if E. glacialis searches overhead for silhouetted masses or layers of copepods. This should permit the whales to locate C. finmarchicus visually throughout most daylight hours at depths throughout their foraging range. Looking laterally, the whales might also be able to see copepod patches at short range near the surface. This article is part of the themed issue ‘Vision in dim light’.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rodolfo Liporoni ◽  
Guaraci Duran Cordeiro ◽  
Paulo Inácio Prado ◽  
Clemens Schlindwein ◽  
Eric James Warrant ◽  
...  

Abstract The foraging activity of diurnal bees often relies on flower availability, light intensity and temperature. We do not know how nocturnal bees, which fly at night and twilight, cope with these factors, especially as light levels vary considerably from night to day and from night to night due to moon phase and cloud cover. Given that bee apposition compound eyes function at their limits in dim light, we expect a strong dependence of foraging activity on light intensity in nocturnal bees. Besides being limited by minimum light levels to forage, nocturnal bees should also avoid foraging at brighter intensities, which bring increased competition with other bees. We investigated how five factors (light intensity, flower availability, temperature, humidity, and wind) affect flower visitation by Neotropical nocturnal bees in cambuci (Campomanesia phaea, Myrtaceae). We counted visits per minute over 30 nights in 33 cambuci trees. Light intensity was the main variable explaining flower visitation of nocturnal bees, which peaked at intermediate light levels occurring 25 min before sunrise. The minimum light intensity threshold to visit flowers was 0.00024 cd/m2. Our results highlight the dependence of these nocturnal insects on adequate light levels to explore resources.


1961 ◽  
Vol 44 (6) ◽  
pp. 1089-1102 ◽  
Author(s):  
Donald Kennedy ◽  
Merle S. Bruno

(1) The spectral sensitivity function for the compound eye of the crayfish has been determined by recording the retinal action potentials elicited by monochromatic stimuli. Its peak lies at approximately 570 mµ. (2) Similar measurements made on lobster eyes yield functions with maxima in the region of 520 to 525 mµ, which agree well with the absorption spectrum of lobster rhodopsin if minor allowances are made for distortion by known screening pigments. (3) The crayfish sensitivity function, since it is unaffected by selective monochromatic light adaptation, must be determined by a single photosensitive pigment. The absorption maximum of this pigment may be inferred with reasonable accuracy from the sensitivity data. (4) The visual pigment of the crayfish thus has its maximum absorption displaced by 50 to 60 mµ towards the red end of the spectrum from that of the lobster and other marine crustacea. This shift parallels that found in both rod and cone pigments between fresh water and marine vertebrates. In the crayfish, however, an altered protein is responsible for the shift and not a new carotenoid chromophore as in the vertebrates. (5) The existence of this situation in a new group of animals (with photoreceptors which have been evolved independently from those of vertebrates) strengthens the view that there may be strong selection for long wavelength visual sensitivity in fresh water.


1972 ◽  
Vol 56 (1) ◽  
pp. 119-128
Author(s):  
U. YINON

The electroretinogram pattern in the compound eye of T. molitor and the appearance of irregular small potentials and spikes superimposed on the ERG are influenced during dark and light adaptation procedures. The amplitude of the principal negative potential reflects bleaching and recovery of the photochemical process. This is not true for the latency values. The delay of the electrical response increases in the dark and decreases in the light adapted eye. These changes were influenced by the intensity of the adapting light. Mutant eyes only lack screening pigment and have normal visual neural pathways. The absence of this pigment lowered the threshold sensitivity of the unscreened eye in dark adaptation. The difference between the adaptation processes in mutants and normal animals has been suggested as a criterion for measuring the net effect of the screening pigment in the compound eye.


Sign in / Sign up

Export Citation Format

Share Document