Increased group size promotes task specialization in a normally solitary halictine bee

Behaviour ◽  
2013 ◽  
Vol 150 (12) ◽  
pp. 1449-1466 ◽  
Author(s):  
C. Tate Holbrook ◽  
Penelope F. Kukuk ◽  
Jennifer H. Fewell

Division of labour is a fundamental property of animal groups; how it is generated and evolves is, therefore, of central importance to sociobiology. Self-organizational models suggest (1) that division of labour can emerge spontaneously at the origin of group living and (2) that increased group size further promotes task specialization. We examined the emergence and scaling of division of labour in an evolutionarily incipient social system: forced associations of the normally solitary halictine bee Lasioglossum (Ctenonomia) NDA-1. A division of labour between nest excavation and guarding arose in pairs and in groups of four bees, with individuals in larger groups exhibiting higher degrees of task specialization. Task differentiation may be facilitated by intrinsic behavioral variability and/or spatial organization. Our results support the hypotheses that division of labour can self-organize at early stages of social evolution and that greater individual specialization is an emergent consequence of increased group size.

2021 ◽  
Vol 9 ◽  
Author(s):  
Robin I. M. Dunbar ◽  
Susanne Shultz

Mammal social groups vary considerably in size from single individuals to very large herds. In some taxa, these groups are extremely stable, with at least some individuals being members of the same group throughout their lives; in other taxa, groups are unstable, with membership changing by the day. We argue that this variability in grouping patterns reflects a tradeoff between group size as a solution to environmental demands and the costs created by stress-induced infertility (creating an infertility trap). These costs are so steep that, all else equal, they will limit group size in mammals to ∼15 individuals. A species will only be able to live in larger groups if it evolves strategies that mitigate these costs. We suggest that mammals have opted for one of two solutions. One option (fission-fusion herding) is low cost but high risk; the other (bonded social groups) is risk-averse, but costly in terms of cognitive requirements.


2015 ◽  
Vol 282 (1801) ◽  
pp. 20142502 ◽  
Author(s):  
Sabrina Amador-Vargas ◽  
Wulfila Gronenberg ◽  
William T. Wcislo ◽  
Ulrich Mueller

Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants ( Pseudomyrmex spinicola ), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved.


2020 ◽  
Author(s):  
dean mobbs ◽  
Ellen Tedeschi ◽  
Anastasia Buyalskaya ◽  
Brian Silston

According to Hamilton’s Selfish Herd Theory, a crucial survival benefit of group living is that it provides a ‘risk dilution’ function against predation. Despite a large literature on group living benefits in animals, few studies have been conducted on how group size alters subjective fear or threat perception in humans, and on what factors drive preferences for being in groups when facing threats. We conducted seven experiments (N=3,838) to test (A) if the presence of others decreases perception of threat under a variety of conditions. In studies 1 to 3, we experimentally manipulated group size in hypothetical and real-world situations, to show that fear responses decreased as group size increased. In studies 4 to 7 we again used a combination of hypothetical, virtual and real-world decisions to test (B) how internal states (e.g. anxiety) and external factors (e.g. threat level, availability of help) affected participants’ preference for groups. Participants consistently chose larger groups when threat and anxiety were high. Overall, our findings show that group size provides a salient signal of protection and safety.


2015 ◽  
Vol 282 (1811) ◽  
pp. 20150704 ◽  
Author(s):  
J. Frances Kamhi ◽  
Kelley Nunn ◽  
Simon K. A. Robson ◽  
James F. A. Traniello

Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina , exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood. Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina . We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems.


2021 ◽  
Author(s):  
Jack Thorley ◽  
Hanna Bensch ◽  
Kyle Finn ◽  
Tim Clutton-Brock ◽  
Markus Zöttl

Damaraland mole-rats (Fukomys damarensis) are usually viewed as an obligatorily group living eusocial species in which successful reproduction is dependent on reproductive altruism of closely related group members. However, the reproductive ecology of social mole-rats in their natural environment remains poorly understood and it is unclear to what extent successful reproduction is dependent on assistance from other group members. Using data from a 7-year field study of marked individuals, we show that, after dispersal from their natal group, individuals typically settled alone in new burrow systems where they enjoyed high survival rates, and often remained in good body condition for several years before finding a mate. Unlike most other eusocial or singular cooperative breeders, we found that Damaraland mole-rats reproduced successfully in pairs without helpers and experimentally formed pairs had the same reproductive success as larger established groups. Overall there was only a weak increase in reproductive success with increasing group size and no effect of group size on adult survival rates across the population. Juveniles in large groups grew faster early in life but their growth rates declined subsequently so that they eventually plateaued at a lower maximum body mass than juveniles from small groups. Taken together, our data suggest that the fitness benefits of group living to breeders are small and we suggest that extended philopatry in Damaraland mole-rats has evolved because of the high costs and constraints of dispersal rather than because of strong indirect benefits accrued through cooperative behaviour.


2021 ◽  
Author(s):  
Simon P. Ripperger ◽  
Gerald G. Carter

AbstractStable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 22 months in captivity. We assessed evidence for six hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that female vampire bats departed their roost individually, but often re-united far outside the roost. Nonrandomly repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when controlling for kinship. Foraging bats demonstrated both affiliative and competitive interactions and a previously undescribed call type. We suggest that social foraging could have implications for social evolution if ‘local’ cooperation within the roost and ‘global’ competition outside the roost enhances fitness interdependence between frequent roostmates.


2018 ◽  
Vol 457 ◽  
pp. 211-220 ◽  
Author(s):  
Jorge Peña ◽  
Georg Nöldeke

2018 ◽  
Vol 115 (39) ◽  
pp. 9702-9707 ◽  
Author(s):  
Daniel Sznycer ◽  
Dimitris Xygalatas ◽  
Elizabeth Agey ◽  
Sarah Alami ◽  
Xiao-Fen An ◽  
...  

Human foragers are obligately group-living, and their high dependence on mutual aid is believed to have characterized our species’ social evolution. It was therefore a central adaptive problem for our ancestors to avoid damaging the willingness of other group members to render them assistance. Cognitively, this requires a predictive map of the degree to which others would devalue the individual based on each of various possible acts. With such a map, an individual can avoid socially costly behaviors by anticipating how much audience devaluation a potential action (e.g., stealing) would cause and weigh this against the action’s direct payoff (e.g., acquiring). The shame system manifests all of the functional properties required to solve this adaptive problem, with the aversive intensity of shame encoding the social cost. Previous data from three Western(ized) societies indicated that the shame evoked when the individual anticipates committing various acts closely tracks the magnitude of devaluation expressed by audiences in response to those acts. Here we report data supporting the broader claim that shame is a basic part of human biology. We conducted an experiment among 899 participants in 15 small-scale communities scattered around the world. Despite widely varying languages, cultures, and subsistence modes, shame in each community closely tracked the devaluation of local audiences (mean r = +0.84). The fact that the same pattern is encountered in such mutually remote communities suggests that shame’s match to audience devaluation is a design feature crafted by selection and not a product of cultural contact or convergent cultural evolution.


2020 ◽  
Vol 287 (1936) ◽  
pp. 20202025
Author(s):  
Cody T. Ross ◽  
Adrian V. Jaeggi ◽  
Monique Borgerhoff Mulder ◽  
Jennifer E. Smith ◽  
Eric Alden Smith ◽  
...  

Inequality or skew in reproductive success (RS) is common across many animal species and is of long-standing interest to the study of social evolution. However, the measurement of inequality in RS in natural populations has been challenging because existing quantitative measures are highly sensitive to variation in group/sample size, mean RS, and age-structure. This makes comparisons across multiple groups and/or species vulnerable to statistical artefacts and hinders empirical and theoretical progress. Here, we present a new measure of reproductive skew, the multinomial index, M , that is unaffected by many of the structural biases affecting existing indices. M is analytically related to Nonacs’ binomial index, B , and comparably accounts for heterogeneity in age across individuals; in addition, M allows for the possibility of diminishing or even highly nonlinear RS returns to age. Unlike B , however, M is not biased by differences in sample/group size. To demonstrate the value of our index for cross-population comparisons, we conduct a reanalysis of male reproductive skew in 31 primate species. We show that a previously reported negative effect of group size on mating skew was an artefact of structural biases in existing skew measures, which inevitably decline with group size; this bias disappears when using M . Applying phylogenetically controlled, mixed-effects models to the same dataset, we identify key similarities and differences in the inferred within- and between-species predictors of reproductive skew across metrics. Finally, we provide an R package, SkewCalc , to estimate M from empirical data.


Sign in / Sign up

Export Citation Format

Share Document