Electron Microscope Studies On the Body Wall and Feeding Apparatus of Longidorus Macrosoma 1)

Nematologica ◽  
1969 ◽  
Vol 15 (4) ◽  
pp. 451-463 ◽  
Author(s):  
Hamdi Z. Aboul-Eid
Parasitology ◽  
1965 ◽  
Vol 55 (1) ◽  
pp. 173-181 ◽  
Author(s):  
D. L. Lee

The cuticle of adults ofNippostrongylus brasiliensishas been described using histological, histochemical and ultrastructural techniques.The cuticle has the following layers: an outer triple-layered membrane; a single cortical layer; a fluid-filled layer which is traversed by numerous collagen fibrils; struts which support the fourteen longitudinal ridges of the cuticle and which are suspended by collagen fibrils in the fluid-filled layer; two fibre layers, each layer apparently containing three layers of fibres; and a basement lamella.The fluid-filled layer contains haemoglobin and esterase.The muscles of the body wall are attached to either the basement lamella or to the fibre layers of the cuticle.The mitochondria of the hypodermis are of normal appearance.The longitudinal ridges of the cuticle appear to abrade the microvilli of the intestinal cells of the host.Possible functions of the cuticle are discussed.I wish to thank Dr P. Tate, in whose department this work was done, for helpful suggestions and criticism at all stages of this work, and Mr A. Page for technical assistance. I also wish to thank Professor Boyd for permission to use the electron microscope in the Department of Anatomy.


1941 ◽  
Vol s2-82 (327) ◽  
pp. 467-540 ◽  
Author(s):  
F. SEGROVE

1. The larvae of Pomatoceros triqueter L. were obtained by artificial fertilization and reared through metamorphosis and for several months afterwards. Larval development took three weeks in summer, and about the same time in winter when the temperature was maintained at 65° F. 2. The eggs are small and give rise to typical trochosphere larvae with well-developed prototroch, metatroch, neurotroch, and feeding cilia, a spacious blastocoelic body-cavity and paired protonephridia. A head-vesicle and a conspicuous anal vesicle are also present. The right eye develops before the left. The larva is very active and grows rapidly at the expense of collected food material. 3. Three setigerous segments arise simultaneously; a fourth is added prior to metamorphosis. The lateral collar-folds develop in two capacious pockets which arise by invagination of the body-wall behind the metatroch, the ventral collar-fold by outgrowth of the ventral body-wall. The rudiments of the thoracic membrane appear above the lateral collar-folds. 4. Metamorphosis commences with the shrinkage of the locomotor apparatus, which leads to the exposure of the lateral collar-folds. The larva settles to the bottom and creeps about on its ventral surface by means of the neurotroch. The branchial crown arises as tripartite outgrowths on the sides of the head. The remaining tissues of the head, apart from the cerebral ganglion and eyes, are gradually resorbed. No tissue is thrown off. 5. The neurotroch gradually disappears and is replaced by cilia on the dorsal surface. The worm begins to secrete a calcareous tube. The resorption of the head is completed and the mouth assumes a terminal position surrounded by the branchial crown. 6. A fourth pair of filaments is added to the branchial crown. The dorsal pair of filaments develops into 'palps'. The third filament on the left side is modified as the operculum; the remaining filaments develop pinnules. 7. Further segments are added to the trunk. Those first added are of the thoracic type from the beginning. The eighth and succeeding setigers are of the abdominal type. The thoracic membrane gradually extends backwards to the posterior end of the thorax. 8. The thoracic nephridia arise as a single pair of cells which give rise to the dorsal unpaired duct by outgrowth. 9. The influence of the egg on the course of development is discussed. It is suggested: (a) that the small size of the egg is responsible for the active habits and protracted pelagic life of the larva; (b) that the mode of development of the collar is significant in that interference with the locomotor and feeding apparatus is thereby avoided; (c) that the general shrinkage which occurs at metamorphosis is related to a suspension of feeding activity in the period between the degeneration of the larval and the establishment of the adult feeding apparatus. 10. The development of Pomatoceros is compared with that of the Serpulid Psygmobranchus and the Sabeilid Branchiomma.


Parasitology ◽  
1965 ◽  
Vol 55 (2) ◽  
pp. 357-364 ◽  
Author(s):  
D. W. T. Crompton ◽  
D. L. Lee

The body wall of Polymorphus minutus has been studied with the electron microscope and the structure of the various layers has been described.The layers are the same in number as those seen with the light microscope, and pores have been found which penetrate the cuticle. Thus, the structure of the surface layers is such as would facilitate the absorption of nutrients.It has been found that the cuticle and striped layer extend over the trunk spines, a feature which increases the area of the absorptive surface of the parasite.The structure of the striped layer of the praesoma supports the theory that the praesoma body wall and lemnisci are involved in the absorption of fat.Mitochondria have been detected in the felt and radial layers of the body wall and in the circular and longitudinal muscles.The body wall of this acanthocephalan worm is entirely different from the body wall of trematodes, cestodes and parasitic nematodes.We are grateful to Dr P. Tate for helpful discussions, Dr R. J. Skaer for criticism of the manuscript and to Professor J. D. Boyd for permission to use the electron microscope in the Department of Anatomy. Thanks are also due to Mr A. J. Page for technical assistance.


1965 ◽  
Vol s3-106 (74) ◽  
pp. 137-146
Author(s):  
W. L. NICHOLAS ◽  
E. H. MERCER

The ultrastructure of the body wall of Moniliformis dubius has been studied in the light and electron microscope. It consists of an apparently syncytial tegument, overlaid by a tenuous cuticle in the form of a finely fibrous extracellular fringe and is backed by a basement membrane and fibrous connective tissue. The tegument contains a framework of fibres, which, distally, is connected to a dense fibrous meshwork separated from the cuticle by two membranes. Within the syncytial tegument are found the usual cytoplasmic organelles: mitochondria (often degenerate in structure), Golgi clusters, small amounts of other smooth membranes, and numerous dense particles (glycogen and perhaps ribosomes). Many mitochondria contain dense particles. Evidence of vacuole formation at the surface of the tegument suggests that pinocytosis plays a part in assimilation.


Parasitology ◽  
1967 ◽  
Vol 57 (3) ◽  
pp. 475-486 ◽  
Author(s):  
R. A. Hammond

The wall of the trunk, that of the praesoma, and the lemnisci of Acanthocephalus ranae have been studied by electron microscopy. Striations visible in sections of the body wall under the light microscope do not correspond with the ‘striped layer’ revealed by the electron microscope.A new region, the ‘canal layer’, has been described. This contains canals running into the body wall from cuticular pores.Structurally the wall of the trunk and that of the praesoma are similar. The lemnisci resemble the ‘inner layer’ of the praesoma wall. However, it is suggested that the wall of the trunk differs physiologically from that of the praesoma, and from the lemnisci. The possible roles of the wall of the praesoma and the lemnisci in fat excretion or uptake have been discussed.The body wall of A. ranae has been compared with that of the other acantho-cephalans studied with the electron microscope.Grateful acknowledgement is made to D.S.I.R. (now S.R.C.) for a research grant to the Department of Zoology for the purchase of a Huxley ultramicrotome, a vacuum coating unit, and an AEI EM 6 electron microscope.I am grateful to Dr D. A. Erasmus for reading and criticizing the manuscript, and to Mr T. Davies for valuable technical assistance.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Sign in / Sign up

Export Citation Format

Share Document