scholarly journals Non-adaptive speciation of snails by left-right reversal is facilitated on oceanic islands

2012 ◽  
Vol 81 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Masaki Hoso

The nearly neutral theory of molecular evolution predicts that small population size is essential for non-adaptive evolution. Evolution of whole-body left-right reversal in snails is generally a compelling example of non-adaptive speciation, because variants with reversed chirality would suffer from reduced mating opportunities within a population. Despite this reproductive disadvantage, sinistral snail species have repeatedly originated from dextral ancestors in terrestrial pulmonates. Here I show that snail speciation by reversal has been accelerated on oceanic islands. Analysing the global biogeography of 995 genera across 84 stylommatophoran families, I found that the proportion of sinistral snail genera was enhanced in genera endemic to oceanic islands. Oceanic islands are relatively small land masses offering highly fragmented habitats for snails. Thus, the upper limit of population size would probably have been small for a long time there. Oceanic islands may have facilitated the fixation of the nonadaptive allele for speciation by reversal, allowing subsequent ecological divergence of sibling species. This study illustrates the potential role of genetic drift in non-adaptive speciation on oceanic islands.

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1773-1787 ◽  
Author(s):  
Bruno Bost ◽  
Dominique de Vienne ◽  
Frédéric Hospital ◽  
Laurence Moreau ◽  
Christine Dillmann

Abstract The L-Shaped distribution of estimated QTL effects (R2) has long been reported. We recently showed that a metabolic mechanism could account for this phenomenon. But other nonexclusive genetic or nongenetic causes may contribute to generate such a distribution. Using analysis and simulations of an additive genetic model, we show that linkage disequilibrium between QTL, low heritability, and small population size may also be involved, regardless of the gene effect distribution. In addition, a comparison of the additive and metabolic genetic models revealed that estimates of the QTL effects for traits proportional to metabolic flux are far less robust than for additive traits. However, in both models the highest R2's repeatedly correspond to the same set of QTL.


2021 ◽  
Vol 13 (8) ◽  
pp. 4280
Author(s):  
Yu Sang Chang ◽  
Sung Jun Jo ◽  
Yoo-Taek Lee ◽  
Yoonji Lee

A large number of articles have documented that as population density of cities increases, car use declines and public transit use rises. These articles had a significant impact of promoting high-density compact urban development to mitigate traffic congestion. Another approach followed by other researchers used the urban scaling model to indicate that traffic congestion increases as population size of cities increases, thus generating a possible contradictory result. Therefore, this study examines the role of both density and population size on traffic congestion in 164 global cities by the use of Stochastic Impacts by Regression on Population, Affluence and Technology model. We divide 164 cities into the two subgroups of 66 low density cities and 98 high density cities for analysis. The findings from the subgroups analysis indicated a clear-cut difference on the critical role of density in low-density cities and the exclusive role of population size in high-density cities. Furthermore, using threshold regression model, 164 cities are divided into the two regions of large and small population cities to determine population scale advantage of traffic congestion. Our findings highlight the importance of including analysis of subgroups based on density and/or population size in future studies of traffic congestion.


2013 ◽  
Vol 45 (03) ◽  
pp. 822-836 ◽  
Author(s):  
Pierre Collet ◽  
Servet Martínez ◽  
Sylvie Méléard ◽  
Jaime San Martín

We introduce two stochastic chemostat models consisting of a coupled population-nutrient process reflecting the interaction between the nutrient and the bacteria in the chemostat with finite volume. The nutrient concentration evolves continuously but depends on the population size, while the population size is a birth-and-death process with coefficients depending on time through the nutrient concentration. The nutrient is shared by the bacteria and creates a regulation of the bacterial population size. The latter and the fluctuations due to the random births and deaths of individuals make the population go almost surely to extinction. Therefore, we are interested in the long-time behavior of the bacterial population conditioned to nonextinction. We prove the global existence of the process and its almost-sure extinction. The existence of quasistationary distributions is obtained based on a general fixed-point argument. Moreover, we prove the absolute continuity of the nutrient distribution when conditioned to a fixed number of individuals and the smoothness of the corresponding densities.


2021 ◽  
Vol 53 (1009) ◽  
pp. 125-133
Author(s):  
Jessica M Vannatta ◽  
Jeffery A Gore ◽  
Verity L Mathis ◽  
Brian D Carver

Abstract Eumops floridanus (Allen, 1932) is a molossid commonly called the Florida bonneted bat or the Florida mastiff bat. Eumops floridanus is the largest species of bat in Florida and is one of 16 species in the genus Eumops. With one of the smallest distributions of any bat in the United States, it is endemic to southern peninsular Florida where it roosts in cavities of live and dead trees and man-made structures. Eumops floridanus was formerly classified as a subspecies of E. glaucinus but has been elevated to species level based on morphology. Due primarily to its restricted distribution, small population size, and the continued loss of habitat, E. floridanus is federally listed as “Endangered” (EN) by the United States Fish and Wildlife Service.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0198901 ◽  
Author(s):  
Nicole L. Crane ◽  
Juliette Tariel ◽  
Jennifer E. Caselle ◽  
Alan M. Friedlander ◽  
D. Ross Robertson ◽  
...  

Author(s):  
Nahid Shokri Bousjein ◽  
Simon Tierney ◽  
Michael Gardner ◽  
Michael Schwarz

Adaptive evolutionary theory argues that organisms with larger effective population size (Ne) should have higher rates of adaptive evolution and therefore greater capacity to win evolutionary arm races. However, in some certain cases species with much smaller Ne may be able to survive beside their opponents for an extensive evolutionary time. Neutral theory predicts that accelerated rates of molecular evolution in organisms with exceedingly small Ne is due to the effects of genetic drift and fixation of slightly deleterious mutations. We test this prediction in two obligate social parasite species and their respective host species from the bee tribe Allodapini. The parasites (genus Inquilina) have been locked into a tight coevolutionary arm races with their exclusive hosts (genus Exoneura) for ~15 million years, even though Inquilina exhibit Ne that are an order of magnitude smaller than their host. In this study, we compared rates of molecular evolution between host and parasite using nonsynonymous to synonymous substitution rate ratios (dN/dS) of eleven mitochondrial protein coding genes sequenced from transcriptomes. Tests of selection on mitochondrial genes indicated no significant differences between host and parasite dN/dS, with evidence for purifying selection acting on all mitochondrial genes of host and parasite species. Several potential factors which could weaken the inverse relationship between Ne and rate of molecular evolution are discussed.


Author(s):  
Lane Kenworthy

Abstract: Social democratic capitalism’s chief practitioners have been the Nordic nations: Denmark, Finland, Norway, and Sweden. Skeptics discount the Nordics’ success on the presumption that these nations have some unique feature that allows them, and only them, to reap the benefits of social democratic policies without suffering tradeoffs. Versions of this story identify the Nordics’ secret weapon as an immutable work ethic, superior intelligence, trust, solidarity, small population size, racial and ethnic homogeneity, institutional coherence, effective government, corporatism, a willingness to be taxed, tax compliance, strong labor unions, or low income inequality. I examine these hypotheses. None holds up to close inspection.


Sign in / Sign up

Export Citation Format

Share Document