Vegetative Remains of the Rosaceae from the Princeton Chert (Middle Eocene) of British Columbia

IAWA Journal ◽  
1990 ◽  
Vol 11 (3) ◽  
pp. 261-280 ◽  
Author(s):  
Sergio R. S. Cevallos-Ferriz ◽  
Ruth A. Stockey

Several anatomieally preserved twigs, a branehing speeimen and the wood of a large axis with affinities to Rosaeeae are deseribed from the Prineeton ehert (Middle Eoeene) of British Columbia, Canada. Speeimens are eharaeterised by a heteroeellular pith with a peri-medullary rone of thiek-walled oval eells and semi-ring-porous seeondary xylem with vertieal traumatie duets, fibres with eireular bordered pits, and mostly seanty paratracheal and oeeasionally apotracheal parenehyma. Ray to vessel pitting is similar to the alternate intervaseular pitting. Seeondary phloem is eomposed of tangentially oriented diseontinuous bands of alternating fibres and thinwalled eells. Seeondary eortical tissues are represented by a phelloderm eharaeterised by rectangular eells and phellern with rectangular eoneave eells. Anatomical variation between speeimens can be related to age of the woody axes. Juvenile and mature wood of this speeies differ in vessel arrangement and presenee of scanty paratracheal parenchyma in mature wood. Vessel elements are arranged in radial multiples, oeeasional clusters as well as solitary vessels. Tyloses and dark cellular contents are present mainly in mature wood. Some twigs have a heterocellular pith with a few scattered cells with dark contents or, occasionally, short irregular rows of these cells. In the branching specimen eells of this type also are organised in longer rows. Together, these anatomical features suggest that all specimens belong to the same taxon, Prunus allenbyensis Cevallos-Ferriz ' Stockey n. sp. Anatomy of this plant reinforces the interpretation of a subtropical to temperate climate during the time of deposition.

1990 ◽  
Vol 68 (6) ◽  
pp. 1327-1339 ◽  
Author(s):  
Sergio R. S. Cevallos-Ferriz ◽  
Ruth A. Stockey

One wood block and many small twigs (up to 1.3 cm diam.) with little secondary growth and showing magnoliaceous characters were identified from the Princeton chert locality (Middle Eocene) of British Columbia, Canada. Specimens were studied with a modified cellulose acetate peel technique and hydrofluoric acid. Well-preserved primary tissues include a chambered pith that distinguishes these twigs from other woods in the chert. Secondary xylem has solitary vessels, radial multiples, and clusters, scalariform perforation plates with 8–27 bars, scalariform, transitional, and opposite intervascular pitting, and tyloses. Imperforate tracheary elements with circular bordered pits, heterocellular and homocellular rays, and marginal parenchyma characterize the twigs. Secondary phloem has dilated rays, alternating bands of fibers and thin-walled cells, and sclerified ray and axial cells. In older wood, opposite intervascular pitting and homocellular rays, suggest affinities with Liriodendron L.; however, the presence of opposite, scalariform, and transitional intervascular pitting and secondary phloem structure necessitate its inclusion in Liriodendroxylon Prakash et al. Liriodendroxylon princetonensis Cevallos-Ferriz et Stockey sp.nov. is distinguished from other species in this genus by the presence of homocellular rays, scalariform intervascular pitting, and well-preserved extraxylary tissues that are unknown for the other fossil species. Liriodendroxylon princetonensis adds to the diversity of extinct magnoliaceous plants during the Eocene and represents the oldest known species of this genus. These plants were probably part of the surrounding forest vegetation in the Princeton basin. Like most extant Magnoliales, L. princetonensis probably lived under subtropical to warm-temperate, moist conditions. Key words: Magnoliaceae, Liriodendroxylon, fossil woods, Eocene.


Botany ◽  
2013 ◽  
Vol 91 (8) ◽  
pp. 514-529 ◽  
Author(s):  
Richard M. Dillhoff ◽  
Thomas A. Dillhoff ◽  
David R. Greenwood ◽  
Melanie L. DeVore ◽  
Kathleen B. Pigg

A flora from Thomas Ranch near Princeton, British Columbia, Canada, is assessed for biodiversity and paleoclimate. This latest Early to early Middle Eocene flora occurs in the Allenby Formation. Seventy-six megafossil morphotypes have been recognized, representing at least 62 species, with 29 identified to genus or species. Common taxa include Ginkgo L., Metasequoia Miki, Sequoia Endl., Abies Mill., Pinus L., Pseudolarix Gordon, Acer L., Alnus Mill., Betula L., Fagus L., Sassafras J Presl, Macginitiea Wolfe & Wehr, Prunus L., and Ulmus L. More than 70 pollen and spore types are recognized, 32 of which are assignable to family or genus. The microflora is dominated by conifers (85%–97% abundance), with Betulaceae accounting for most of the angiosperms. The Climate Leaf Analysis Multivariate Program (CLAMP) calculates a mean annual temperature (MAT) of 9.0 ± 1.7 °C and bioclimatic analysis (BA) calculates a MAT of 12.8 ± 2.5 °C. Coldest month mean temperature (CMMT) was >0 °C. Mean annual precipitation (MAP) was >70 cm/year but is estimated with high uncertainty. Both the CLAMP and BA estimates are at the low end of the MAT range previously published for other Okanagan Highland localities, indicating a temperate climate consistent with a mixed conifer–deciduous forest.


IAWA Journal ◽  
1993 ◽  
Vol 14 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Steven R. Manchester ◽  
E.A. Wheeler

Clarnoxylon blanchardii gen. et sp. nov. is a new taxon for fossil wood with a suite of features diagnostic of the Juglandaceae. It occurs at two Middle Eocene (c. 43-44 million years b.p.) localities in the Clarno Fonnation of central Oregon, USA. Clarnoxylon resembles the Platycaryeae and the Hicorieae in having exclusively simple perforation plates and solid pith. However, the common occurrence of crystalliferous idioblasts in the rays, but not in the axial parenchyma, and the cooccurrence at Clarno of platycaryoid fmits and pollen unaccompanied by hicorioid fmits indicate that Clarnoxylon has affinities with the Platycaryeae. Differences between Clarnoxylon and Platycarya support previous suggestions that short vessel elements, helical thickenings, and vascular tracheids are derived characters of Platycarya. These differences are also in accord with the ecological adaptation of the extant genus Platycarya to a temperate climate contrasting with the tropical Middle Ebcene setting of Clarnoxylon.


1977 ◽  
Vol 14 (5) ◽  
pp. 953-962 ◽  
Author(s):  
M. V. H. Wilson

Middle Eocene lacustrine sediments, cropping out in the valley of the Horsefly River, British Columbia, contain abundant fossils of fishes, fish scales, fish coprolites, insects, leaves, and diatoms. The fish scales, insects, and leaves are preserved in at least three sequences of alternating light tuff and dark sapropel laminae, separated stratigraphically by coarse-grained structureless sequences. The proportions of the main types of fossils occurring in the light laminae compared with the dark laminae are significantly different, and are consistent with the hypothesis that the laminations are varves, with dark organic winter laminae and light inorganic summer laminae. Occasional graded sandy layers contain carbonized allochthonous plant remains and represent turbidity deposits caused by storms in the drainage basin.It is proposed here that the varves were deposited in the deeper regions of a stratified, monomictic or meromictic lake in a warm temperate climate. The depositional environment was anaerobic, containing abundant hydrogen sulphide, and was free of turbulence and benthos. Fish were entombed mostly during the winter, insects during the spring and summer, coprolites during the summer, and deciduous leaves during the late summer and autumn. The fish died of starvation and (or) overturn-induced anoxia.


1981 ◽  
Vol 59 (12) ◽  
pp. 2379-2410 ◽  
Author(s):  
James F. Basinger

Anatomically preserved vegetative remains of Metasequoia milleri Rothwell and Basinger are common in the Princeton chert of the Allenby Formation in southern British Columbia. Deposition of the Allenby Formation and associated volcanics occurred during Middle Eocene time. The Princeton chert locality is in the upper strata of the Allenby Formation and is of late Middle Eocene age. The Princeton chert was formed by siliceous permineralization of marsh soil. Dissolved silicates were probably introduced by periodic influx of water from mineral springs or geysers.Anatomical features of stems, wood, and leaves are well preserved. Mature wood of the fossil resembles that of Metasequoia glyptostroboides in having traumatic resin cysts; opposite pitting on radial walls of tracheids; taxodioid cross-field pitting; tall, uniseriate rays; smooth-walled ray parenchyma; and diffuse, resinous, smooth-walled wood parenchyma. Leaves are linear, hypostomatic, and borne decussately, and have one or three resin ducts and slightly undulate to smooth epidermal cell walls. Leaves of living M. glyptostroboides differ in consistently having three resin ducts and much more pronounced undulations of epidermal cell walls. Metasequoia milleri has leaves of a generalized structure from which leaf types of many taxodiaceous genera could be derived. Roots associated with M. milleri are dimorphic. Primary tissues and secondary phloem are exceedingly well preserved. Cortex of both long and short roots contains mycorrhizal fungi.Compression remains of M. occidentalis are not distinguishable from M. glyptostroboides. Anatomical features of M. milleri, however, do reveal differences between Eocene and living Metasequoia. Wood rays of M. milleri are much higher than those of M. glyptostroboides. Other features of stem anatomy are similar in both species. Pollen cones differ in developmental and minor anatomical features. The close similarity of most organs of M. milleri to M. glyptostroboides and the dissimilarity of leaf structure indicate mosaic evolution within the genus.


2012 ◽  
Vol 150 (3) ◽  
pp. 385-395 ◽  
Author(s):  
ALICJA M. LACINSKA ◽  
MICHAEL T. STYLES

AbstractMineralogical studies of a silicified serpentinite from the United Arab Emirates throw light on the formative processes. The silicified serpentinite is a residuum of a palaeo-weathering surface that probably developed in a temperate climate with alternating wet and dry periods during middle Eocene to late Miocene times. The rock textures indicate that silicification occurred in a fluid-saturated zone. Silica precipitation is favoured at near-neutral pH. In this study we infer that these pH conditions of the mineralizing fluids could arise in a near-surface mixing zone where acidic meteoric and hyperalkaline groundwater fluids are mingled. This mingling is believed to have resulted from alternating processes of evaporation and precipitation that prevailed during dry and wet seasons, respectively. The silicified serpentinite is composed of > 95% quartz and exhibits a ghost texture of the protolith serpentinite. Preservation of the textures indicates an iso-volumetric grain-by-grain replacement by dissolution of Mg-silicate and simultaneous precipitation of either opal or microquartz as siliceous seeds. These were subsequently overgrown by silica that was probably remobilized from deeply weathered regolith elsewhere.


1974 ◽  
Vol 11 (3) ◽  
pp. 409-421 ◽  
Author(s):  
Marian Kuc

New fossil taxa (Ditrichites fylesi, Muscites maycocki, M. ritchiei, Palaeohypnum jovet-asti and P. steerei); unnamed moss and moss-like fossils, detrital fragments of various plant tissues, and paleobotanical evidence of the bisaccate zone are described from the Middle Eocene Allenby Formation near Princeton, British Columbia. These remains occur in laminated, tuffaceous, silty and pyroclastic shale, deposited under lacustrine conditions.Detailed examination of the various laminae indicates that beds of white colour and composed of coarser silt grains are poor in fossils and could be related to periods of decreasing bioproduction; less silty and darker coloured beds are rich in macro- and microfossils and could be related to periods of extensive bioproduction. The rock features, lamination, and distribution of macrofossils indicate the slow and undisturbed accumulation of plant remains on a lake bottom.


1992 ◽  
Vol 29 (1) ◽  
pp. 3-14 ◽  
Author(s):  
G. Beaudoin ◽  
J. C. Roddick ◽  
D. F. Sangster

The Ag–Pb–Zn–Au vein and replacement deposits of the Kokanee Range, southeastern British Columbia, are hosted by the Middle Jurassic Nelson batholith and surrounding Cambrian to Triassic metasedimentary rocks in the hanging wall of the transcrustal Slocan Lake Fault, Field relations indicate that mineralization is younger than the Nelson batholith and a Middle Jurassic foliation in the Ainsworth area but coeval or older than Eocene unroofing of the Valhalla metamorphic core complex in the footwall of the Slocan Lake Fault. Lamprophyre and gabbro dykes are broadly coeval with mineralization and have biotite and hornblende K–Ar ages defining a short-lived Middle Eocene alkaline magmatic event between 52 and 40 Ma. An older, Early Cretaceous alkaline magmatic event (141 – 129 Ma) is possible but incompletely documented.K–Ar and step-heating 40Ar/39Ar analyses on hydrothermal vein and alteration muscovite indicate that hydrothermal fluids were precipitating vein and replacement deposits 58–59 Ma ago. Crosscutting relationships with lamprophyre dykes indicate the Kokanee Range hydrothermal system lasted for more than 15 Ma. Eocene crustal extension resulted in a high heat flow and structures which were probably responsible for hydrothermal fluid movement and flow paths.A 100 Ma time interval is documented between batholith emplacement and spatially associated mineralization, ruling out any genetic link between the two. Similar large age differences between granite intrusion and peripheral mineralization have recently been documented for two world-sea le Ag–Pb–Zn vein districts, which suggest that spatial association between granite and Ag–Pb–Zn mineralization is not sufficient to infer a genetic link.


Sign in / Sign up

Export Citation Format

Share Document