scholarly journals Histologie comparée des fosses nasales de quelques Tortues marines (Dermochelys coriacea et Chelonia mydas) et d’eaux douces (Emys orbicularis et Pseudemys scripta) (Reptilia, Dermochelyidae, Cheloniidae, Emydidae)

1991 ◽  
Vol 61 (1) ◽  
pp. 51-61
Author(s):  
H. Saint-Girons

Comparative histological studies carried out on the nasal cavity of four species of turtles showed that the sea turtles have a more or less regressed olfactive epithelium compared to that of the Emydidae but that their vomeronasal epithelium is more developed. The location of the vomeronasal epithelium in the cavum also differs. The data suggest that the Dermochelyidae were adapted to a strict aquatic life a long time before the Cheloniidae.

2021 ◽  
Author(s):  
Callie A. Veelenturf ◽  
Elizabeth M. Sinclair ◽  
Peter Leopold ◽  
Frank V. Paladino ◽  
Shaya Honarvar

Abstract Hatching success in sea turtles is hindered by a variety of biotic and abiotic factors. This study of the nesting ecology of leatherback (Dermochelys coriacea) and green (Chelonia mydas) sea turtles, investigated how several environmental factors and beach characteristics on Bioko Island, Equatorial Guinea influence sea turtle reproductive success. Average clutch hatching success was 40.4% for green turtles and 41.73% for leatherback turtles. For leatherback turtles, clutch elevation relative to the high tide line (HTL) was found to be the most influential factor in determining hatching success, highlighting the sensitivity of this species to sea level rise (SLR). Multiple linear regression analysis demonstrated that nest distance to vegetation and sand conductivity also played significant roles in leatherback clutch hatching success. For leatherback clutches, 33% percent of experimental nests were affected by inundation and 17% by predation. An optimum clutch elevation range for leatherback turtles was identified, where a distinct increase in hatching success was observed between -0.286 m to -0.0528 m above the HTL. For green sea turtles, 64% of experimental nests were affected by predation, confounding conclusions about the roles of environmental characteristics in green turtle hatching success. We propose further investigation into influential characteristics in green turtle nests and confirmation of the observed optimum elevation range on Bioko Island and other nesting grounds. Identified sensitivities of each species to SLR and beach characteristics will be used to encourage the government of Equatorial Guinea to consider the vulnerability of their resident turtle populations when planning for future coastal development.


1996 ◽  
Vol 74 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Matthew H. Godfrey ◽  
N. Mrosovsky ◽  
R. Barreto

Leatherback (Dermochelys coriacea) and green (Chelonia mydas) sea turtles in Suriname lay eggs over several months of the year. During this nesting season, changes in rainfall produce changes in sand temperature, which in turn influence the sexual differentiation of incubating sea turtle embryos. The overall sex ratio of leatherback and green sea turtle hatchlings produced at Matapica beach in Suriname was investigated. Estimates of the sex ratios of these turtles in 1993 (green turtles 63.8% female, leatherbacks 69.4% female) were roughly 10% more female-biased than those from an earlier study in 1982. For both species, a significant negative relationship was found between monthly rainfall and monthly sex ratios. Using this relationship and data on rainfall in the past, it was possible to estimate overall sex ratios for an additional 12 years. These estimates varied considerably among different years, ranging from 20 to 90% female in the case of green turtles. Nevertheless, males tended to be produced primarily in April and May, while some females were produced in all months. Such seasonal patterns of production of turtles of different sexes have implications for sea turtle conservation programs that involve manipulating or harvesting eggs.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1490
Author(s):  
Amanda James ◽  
Annie Page-Karjian ◽  
Kate E. Charles ◽  
Jonnel Edwards ◽  
Christopher R. Gregory ◽  
...  

Chelonid alphaherpesvirus 5 (ChHV5) is strongly associated with fibropapillomatosis, a neoplastic disease of sea turtles that can result in debilitation and mortality. The objectives of this study were to examine green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and leatherback (Dermochelys coriacea) sea turtles in Grenada, West Indies, for fibropapillomatosis and to utilize ChHV5-specific PCR, degenerate herpesvirus PCR, and serology to non-invasively evaluate the prevalence of ChHV5 infection and exposure. One-hundred and sixty-seven turtles examined from 2017 to 2019 demonstrated no external fibropapilloma-like lesions and no amplification of ChHV5 DNA from whole blood or skin biopsies. An ELISA performed on serum detected ChHV5-specific IgY in 18/52 (34.6%) of green turtles tested. In 2020, an adult, female green turtle presented for necropsy from the inshore waters of Grenada with severe emaciation and cutaneous fibropapillomas. Multiple tumors tested positive for ChHV5 by qPCR, providing the first confirmed case of ChHV5-associated fibropapillomatosis in Grenada. These results indicate that active ChHV5 infection is rare, although viral exposure in green sea turtles is relatively high. The impact of fibropapillomatosis in Grenada is suggested to be low at the present time and further studies comparing host genetics and immunologic factors, as well as examination into extrinsic factors that may influence disease, are warranted.


1991 ◽  
Vol 7 (6) ◽  
pp. 627-635 ◽  
Author(s):  
D. P. M. Northmore ◽  
A. M. Granda

AbstractMeasurements were made of the ocular dimensions from living and frozen eyes of one species of freshwater turtle, Pseudemys scripta elegans, and of three species of marine turtles, Chelonia mydas, Dermochelys cariacea, and Eretmochelys imbricata. Estimates of refractive error by retinoscopy were also obtained with eyes in air and under water. The results suggest that unaccommodated eyes of all four species are approximately emmetropic in air but strongly hyperopic in water. Schematic eyes were calculated for each species in both air and water.


2021 ◽  
Vol 16 (4) ◽  
pp. 521-538
Author(s):  
Raísa da Silva Costa Rêgo ◽  
Eric Azevedo Cazetta ◽  
Caio Henrique Gonçalves Cutrim ◽  
Amanda Soares Miranda ◽  
Ana Paula Albano Araújo ◽  
...  

The south-western region of the Atlantic Ocean has feeding and nesting areas for the five species of sea turtles registered in Brazil, which are in different degrees of extinction threat, mainly due to anthropogenic factors. Fishing and the ingestion of solid waste, were identified as causing stranding and the mortality of sea turtles. In this work, data from the monitoring of beaches in the Municipalities of Macaé and Rio das Ostras, important oil zone in Brazil, in the north-central region of the State of Rio de Janeiro, were used in order to analyse the effects of seasonality on the sea turtle stranding. The monitoring was carried out daily from September 2017 to June 2019, in a study area covering 23.8 km long beach. Stranding data were obtained from active (n = 126) and passive (n = 66) monitoring of beaches and included the records of Chelonia mydas (n = 151), Caretta caretta (n = 23), Lepidochelys olivacea (n = 14), Dermochelys coriacea (n = 2) and Eretmochelys imbricata (n = 1). The largest stranding record occurred in the summer (n = 61) and spring (n = 60), a period compatible with the reproductive season of the species. The results obtained in this study emphasise the importance of the analysis of strandings of sea turtles, which provide relevant data on the biology of the group, the intra and interspecific dynamics and the state of conservation of these animals.


2016 ◽  
Vol 53 (3) ◽  
pp. 211-223 ◽  
Author(s):  
M. R. Werneck ◽  
R. J. Da Silva

SummaryThis paper presents a list of parasites described in sea turtles from the Neotropical region. Through the review of literature the occurrence of 79 taxa of helminthes parasites were observed, mostly consisting of the Phylum Platyhelminthes with 76 species distributed in 14 families and 2 families of the Phylum Nematoda within 3 species. Regarding the parasite records, the most studied host was the green turtle (Chelonia mydas) followed by the hawksbill turtle (Eretmochelys imbricata), olive ridley turtle (Lepidochelys olivacea), loggerhead turtle (Caretta caretta) and leatherback turtle (Dermochelys coriacea). Overall helminths were reported in 12 countries and in the Caribbean Sea region. This checklist is the largest compilation of data on helminths found in sea turtles in the Neotropical region.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nathan J. Robinson ◽  
Daniel García-Párraga ◽  
Brian A. Stacy ◽  
Alexander M. Costidis ◽  
Gabriela S. Blanco ◽  
...  

Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.


2016 ◽  
Vol 3 (1) ◽  
pp. 20-23
Author(s):  
Sergio Escobar-Lasso ◽  
Luis Fonseca ◽  
Wilbert N. Villachica ◽  
Hansel Herrera ◽  
Roldán A. Valverde ◽  
...  

Jaguars have been recorded preying on adult female sea turtles on their nesting beaches in Costa Rica, Guyana, Mexico and Suriname (Fretey 1977, Autar 1994, Cuevas et al. 2014, Guildera et al. 2015). Jaguars prey on Green (Chelonia mydas), Olive Ridley (Lepidochelys olivacea), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea) sea turtles (see Fretey 1977, Autar 1994, Carrillo et al. 1994, Chinchilla 1997, Tröeng 2000, Heithaus et al. 2008, Veríssimo et al. 2012, Arroyo-Arce et al. 2014, Cuevas et al. 2014, Arroyo-Arce & Salom-Pérez 2015, Guildera et al. 2015). The capture effort and risk of injury associated with the predation of nesting sea turtles is expected to be lower relative to other prey species in the jaguar’s diet (Cavalcanti & Gese 2010). Additionally, they can be key resources when other pr ey availability is low (Veríssimo et al. 2012).


Author(s):  
Gilberto Sales ◽  
Bruno B. Giffoni ◽  
Paulo C.R. Barata

This paper presents data on the incidental catch of sea turtles in both the Brazilian exclusive economic zone and adjacent international waters (both areas are located mainly in the south-western Atlantic) by Brazilian commercial pelagic longliners targeting swordfish, tuna and sharks. Data were obtained by on-board observers for 311 trips carried out in 2001–2005, totalling 7385 sets and 11,348,069 hooks. A total of 1386 sea turtles were incidentally captured in the five years (some of them were considered dead at capture): 789 loggerheads (Caretta caretta), 341 leatherbacks (Dermochelys coriacea), 45 green turtles (Chelonia mydas), 81 olive ridleys (Lepidochelys olivacea) and 130 of unknown species. Taking into account the distribution of the fishing effort in the study area and the incidental catch of sea turtles, four regions were highlighted for the analyses: Zone 1 is located off the northern Brazilian coast; Zone 2 is located off the central Brazilian coast; Zone 3 is the region off the southern Brazilian coast; and Zone 4, located in the open sea almost totally within international waters, is the region around a chain of undersea mountains known as the Rio Grande Rise (Elevação do Rio Grande). There is no information on the origin (nesting areas) of the captured olive ridleys, but there is some evidence, obtained through genetic and demographic analyses, that loggerheads, leatherbacks and green turtles inhabiting the open ocean around Brazil originate from nesting areas in several countries. Together with the fact that the south-western Atlantic is fished by longliners again from several countries, this places the conservation of sea turtles in that part of the ocean in an international context. Some conservation actions carried out by Brazil concerning the interaction between pelagic longlines and sea turtles in the study area are described.


Oryx ◽  
1994 ◽  
Vol 28 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Berthin Rakotonirina ◽  
Andrew Cooke

Five species of sea turtles are known from Madagascar's coastal waters. Fishermen on the western and south-western coasts take green turtle Chelonia mydas, loggerhead turtle Caretta caretta and olive ridley Lepidochelys olivacea for their meat. The hawksbill turtle Eretmochelys imbricata is taken mainly for its shell and for making stuffed specimens while the leatherback Dermochelys coriacea is seldom caught. Anecdotal evidence of fishermen and dealers in turtle products, measurement of captured animals and personal observations of the authors all point to declines in numbers and average size for green and hawksbill turtles, coupled with marked declines in nesting rates for these and the olive ridley.


Sign in / Sign up

Export Citation Format

Share Document