Neuromuscular Electrical Stimulation Improves Lower-Limb Strength After Long-Term Bedrest: Case Study In A Mechanically-Ventilated Intensive Care Patient

Author(s):  
Jonathon J. Carkner ◽  
Gregory Murphy ◽  
Jean Bourbeau ◽  
Sandra Dial ◽  
Tanja Taivassalo
2021 ◽  
Vol 9 (8) ◽  
Author(s):  
Meriem Rouai ◽  
Meryam Chaabani ◽  
Ayette Laabidi ◽  
Noureddine Litaiem ◽  
Lotfi Rebai

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
M Borges ◽  
M Lemos Pires ◽  
R Pinto ◽  
G De Sa ◽  
I Ricardo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Exercise prescription is one of the main components of phase III Cardiac Rehabilitation (CR) programs due to its documented prognostic benefits. It has been well established that, when added to aerobic training, resistance training (RT) leads to greater improvements in peripheral muscle strength and muscle mass in patients with cardiovascular disease (CVD). With COVID-19, most centre-based CR programs had to be suspended and CR patients had to readjust their RT program to a home-based model where weight training was more difficult to perform. How COVID-19 Era impacted lean mass and muscle strength in trained CVD patients who were attending long-term CR programs has yet to be discussed. Purpose To assess upper and lower limb muscle strength and lean mass in CVD patients who had their centre-based CR program suspended due to COVID-19 and compare it with previous assessments. Methods 87 CVD patients (mean age 62.9 ± 9.1, 82.8% male), before COVID-19, were attending a phase III centre-based CR program 3x/week and were evaluated annually. After 7 months of suspension, 57.5% (n = 50) patients returned to the face-to-face CR program. Despite all constraints caused by COVID-19, body composition and muscle strength of 35 participants (mean age 64.7 ± 7.9, 88.6% male) were assessed. We compared this assessment with previous years and established three assessment time points: M1) one year before COVID-19 (2018); M2) last assessment before COVID-19 (2019); M3) the assessment 7 months after CR program suspension (last trimester of 2020). Upper limbs strength was measured using a JAMAR dynamometer, 30 second chair stand test (number of repetitions – reps) was used to measure lower limbs strength and dual energy x-ray absorptiometry was used to measure upper and lower limbs lean mass. Repeated measures ANOVA were used. Results Intention to treat analysis showed that upper and lower limbs lean mass did not change from M1 to M2 but decreased significantly from M2 to M3 (arms lean mass in M2: 5.68 ± 1.00kg vs M3: 5.52 ± 1.06kg, p = 0.004; legs lean mass in M2: 17.40 ± 2.46kg vs M3: 16.77 ± 2.61kg, p = 0.040). Lower limb strength also decreased significantly from M2 to M3 (M2: 23.31 ± 5.76 reps vs M3: 21.11 ± 5.31 reps, p = 0.014) after remaining stable in the year prior to COVID-19. Upper limb strength improved significantly from M1 to M2 (M1: 39.00 ± 8.64kg vs M2: 40.53 ± 8.77kg, p = 0.034) but did not change significantly from M2 to M3 (M2 vs M3: 41.29 ± 9.13kg, p = 0.517). Conclusion After CR centre-based suspension due to COVID-19, we observed a decrease in upper and lower limbs lean mass and lower limb strength in previously trained CVD patients. These results should emphasize the need to promote all efforts to maintain physical activity and RT through alternative effective home-based CR programs when face-to-face models are not available or possible to be implemented.


Author(s):  
Eun Mi Jang ◽  
So Hyun Park

(1) Background—The application of neuromuscular electrical stimulation (NMES) combined with low-intensity exercise to the elderly can be more efficient than low-intensity exercise only in terms of delaying the loss of muscle mass. We aimed to assess the adjunct of NMES to low-intensity lower limb strengthening exercise to prevent falls in frail elderly for a relatively short period of 4 weeks. (2) Methods—Thirty elderly women aged 65 or above were randomly categorized into three groups: control group (CON, n = 8), exercise group (EX, n = 10), and NMES with exercise group (EX + NMES, n = 9). The exercise group took part in a lower limb strengthening exercise program for one hour three times a week for four weeks. Furthermore, the NMES with exercise group had added NMES stimulation when exercising. The limbs’ muscle mass, body fat mass, calf circumference, grip force, five times sit-to-stand test, timed up-and-go test (TUG), one-leg stand test, and Y-balance test (YBT) were evaluated at baseline and 4 weeks after. (3) Results—Comparisons between the three groups showed that the TUG was significantly decreased and the YB was significantly increased in NMES with exercise group (p < 0.05). (4) Conclusions—These results suggested that a combination of NMES stimulation and exercises was more helpful in strengthening balance than exercises alone in the short term.


2003 ◽  
Vol 9 (5) ◽  
pp. 345-355 ◽  
Author(s):  
Hans-Joachim Trappe ◽  
Bodo Brandts ◽  
Peter Weismueller

2014 ◽  
Vol 128 (6) ◽  
pp. 357-365 ◽  
Author(s):  
Marlou L. Dirks ◽  
Dominique Hansen ◽  
Aimé Van Assche ◽  
Paul Dendale ◽  
Luc J. C. Van Loon

Patients admitted to the intensive care unit (ICU), especially fully sedated patients, experience extensive muscle wasting. Neuromuscular electrical stimulation prevents muscle fibre atrophy in these critically ill comatose patients during 7 days of ICU stay, and possibly improves survival and subsequent rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document