Phylogenetic relationships of the Balkan Moitessieriidae (Caenogastropoda: Truncatelloidea)

Zootaxa ◽  
2018 ◽  
Vol 4486 (3) ◽  
pp. 311 ◽  
Author(s):  
SEBASTIAN HOFMAN ◽  
ALEKSANDRA RYSIEWSKA ◽  
ARTUR OSIKOWSKI ◽  
JOZEF GREGO ◽  
BORIS SKET ◽  
...  

The family Moitessieriidae includes minute dioecious gastropods exclusively inhabiting subterranean waters, including thermal ones. Only empty shells were collected in most species, the vast majority of them are described from their gross shell morphology alone. Several visits to a site are usually required to obtain at least some living individuals. High variability in shell morphology and the lack of diagnostic features, coupled with anticipated high levels of endemism, has resulted in a long list of nominal moitessierid species. Type specimens stored as empty shells omit unambiguous identification and delimitation of species boundaries. Due to inaccessibility of cave animals and consequent lack of material suitable for molecular analysis, the phylogenetic relationships, as well as the taxonomy of the family at genus/species level, are far from being understood. The anatomy of the family is also poorly known and provided only for a few taxa. The distinctness of the Moitessieriidae has sometimes been questioned, and their monophyly not proved. Twelve species of the Balkan Moitessieriidae are considered: two species of Paladilhiopsis, two species of Bythiospeum, six species of Iglica, Costellina turrita and Lanzaia bosnica. The shell morphology of each species, as well as the reproductive system of Paladilhiopsis and Iglica, were analysed. DNA sequences of nuclear histone H3, ribosomal 18S, ribosomal 28S and mitochondrial cytochrome oxidase subunit I (COI) were applied to infer phylogenetic relationships among the taxa. The sequences of Bythiospeum from GenBank have been used to infer relationships between Bythiospeum and Paladilhiopsis that were recently synonymized. Paladilhiopsis and Iglica are distinct, but closely related genera, as is the genus Bythiospeum, which does not occur in the Balkans. Its relationships with both former taxa remain unresolved. The Moitessieriidae are clearly distinct from all other families of the Truncatelloidea, however, their monophyly remains doubtful. 

2009 ◽  
Vol 54 (15) ◽  
pp. 2648-2655 ◽  
Author(s):  
Nian Liu ◽  
Yong Zhu ◽  
ZongXian Wei ◽  
Jie Chen ◽  
QingBiao Wang ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5783 ◽  
Author(s):  
María Capa ◽  
Torkild Bakken ◽  
Karin Meißner ◽  
Arne Nygren

BackgroundLong-bodied sphaerodorids (Annelida, Sphaerodoridae) is the common name for members of the three closely and morphologically homogenous currently accepted genera of benthic marine bristle worms:Ephesiella,EphesiopsisandSphaerodorum. Members of this group share the presence of two dorsal and longitudinal rows of macrotubercles with terminal papillae, and two longitudinal rows of microtubercles, features that are unique among sphaerodorids. Genera are distinguished by the chaetae morphology. Members ofEphesiellaare characterised by having compound chaetae (except, sometimes, simple chaetae in the first chaetigers),Sphaerodorumbear only simple chaetae, andEphesiopsishave both compound and simple chaetae in all parapodia.MethodsMitochondrial (partial COI and 16S rDNA) and nuclear (partial 18S rDNA and 28S rDNA) sequence data of long-bodied sphaerodorids with compound and simple chaetae, and an outgroup of additional seven sphaerodorid species were analysed separately and in combination using Bayesian inference (BA), and Maximum Likelihood (ML) methods. Long-bodied sphaerodorids from around the world (including type specimens) were examined under a range of optical equipment in order to evaluate putative generic and specific diagnostic features, in addition to intraspecific variability.ResultsPhylogenetic analyses of mitochondrial and nuclear DNA sequences of specimens identified asEphesiellaandSphaerodorum,based on chaeta morphology, were performed.SphaerodorumandEphesiellawere recovered as paraphyletic and nested within each other. Revision of current nominal species diagnostic features are performed and discussed.DiscussionResults contradict current generic definitions. Recovery of paraphyletic compound and simple chaetae clades urge the synonymization of these two genera of long-bodied sphaerodorids. Morphological data also suggest the synonymization ofEphesiopsis.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 361
Author(s):  
Luis Mamani ◽  
Juan C. Chaparro ◽  
Claudio Correa ◽  
Consuelo Alarcón ◽  
Cinthya Y. Salas ◽  
...  

The family Gymnophthalmidae is one of the most speciose lineages of lizards in the Neotropical region. Despite recent phylogenetic studies, the species diversity of this family is unknown and thus, its phylogenetic relationships remain unclear and its taxonomy unstable. We analyzed four mitochondrial (12S, 16S, Cytb, ND4) and one nuclear (c-mos) DNA sequences of Pholidobolus anomalus, Cercosaura manicata boliviana and Cercosaura sp., using the maximum likelihood method to give insights into the phylogenetic relationships of these taxa within Cercosaurinae. Our results suggest that Pholidolus anomalus is nested within the clade of Cercosaura spp., that material we collected near Oxapampa belongs to a new species of Cercosaura, and that lizards identified as Cercosaura manicata boliviana belong to a separate lineage, possibly a new genus. We assign Pholidobolus anomalus to Cercosaura, redescribe the species, and designate a neotype to replace the lost holotype. In addition, we describe the new species of Cercosaura, and comment about the taxonomic status of “Cercosaura manicata boliviana”incertae sedis.


2000 ◽  
Vol 17 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Masanao Honda ◽  
Hidetoshi Ota ◽  
Mari Kobayashi ◽  
Jarujin Nabhitabhata ◽  
Hoi-Sen Yong ◽  
...  

2000 ◽  
Vol 17 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Masanao Honda ◽  
Hidetoshi Ota ◽  
Mari Kobayashi ◽  
Jarujin Nabhitabhata ◽  
Hoi-Sen Yong ◽  
...  

Zootaxa ◽  
2017 ◽  
Vol 4366 (1) ◽  
pp. 1 ◽  
Author(s):  
AGATA KIAŁKA ◽  
RAFAŁ RUTA

In this study we summarise the knowledge of the history and current state of research on the New Zealand Scirtidae to provide a base for further research on the family. Data on Tord Nyholm’s research and collections are presented, based on a study of the archives and collection of Swedish Museum of Natural History. The main part of the paper is a catalogue of all described species of Scirtidae known to occur in New Zealand. A total of 11 genera and 126 species of Scirtidae is recorded for New Zealand, with 82% genera and 100% of species endemic to the New Zealand region. A reference to the original description, type locality, type depository and the known distribution within New Zealand is included for each species. Primary type specimens are illustrated for most species. Type species are designated in the present paper for Cyphanus Sharp, 1878 (type species: Cyphanus debilis Sharp, 1878), Mesocyphon Sharp, 1878 (type species: Mesocyphon marmoratus Sharp, 1878), and Veronatus Sharp, 1878 (type species: Anobium tricostellum White, 1846) as they were not fixed in the original descriptions or in subsequent works. Brounicyphon Pic, 1947 is considered a junior subjective synonym of Veronatus. Cyphon huttoni Sharp, 1878 is transferred to the genus Contacyphon Gozis, 1886. 


2019 ◽  
Vol 44 (4) ◽  
pp. 753-767
Author(s):  
Tian-Chuan Hsu ◽  
Yu-Fang Huang ◽  
Yi-Shan Chao

Abstract—Hymenophyllum subg. Mecodium, composed of the taxonomically notorious H. polyanthos and approximately 15 other closely related taxa, is a common element of filmy fern communities in the tropical and subtropical moist forests. In Taiwan, although only H. polyanthos and one or two closely related taxa were recognized in recent studies, considerable morphological variation has been observed among populations throughout the island. Thus, we conducted an extensive morphological investigation, as well as a molecular phylogenetic analysis, to clarify the specific diversity and phylogenetic relationships within Hymenophyllum subg. Mecodium in Taiwan. Field and herbaria surveys helped in recognizing five morphs in Taiwan, mainly differentiated by the combination of certain traits, viz., the presence or absence of stipe wings, general frond size and shape, degree of laminar crispation, sori position, and involucre shape. The different morphs had diverse ecological preferences. The phylogenetic tree, inferred from the sequences of the plastid loci rbcL and rps4-trnS, demonstrated that Hymenophyllum subg. Mecodium materials in Taiwan comprise several well-supported lineages, mostly corresponding to the classification based on morphology. Comparing with the protologues and type specimens of 34 related scientific names, the five morphs are herein recognized as five independent species. A new species, Hymenophyllum exquisitum, is described here. Also, the status of H. paniculiflorum is reconfirmed and that of H. fujisanense, H. parallelocarpum, and H. punctisorum reinstated. Only H. exquisitum and H. parallelocarpum are endemic to Taiwan among all the species studied. In addition, the names Hymenophyllum blumeanum, H. integrum, H. microsorum, H. polyanthos, H. tenellum, and H. wrightii are now excluded from the regional flora, and several related taxa from China, Taiwan, and the Philippines are treated as synonyms. This study unravels the deep phylogenetic relationships within Hymenophyllum subg. Mecodium in Taiwan and Eastern Asia.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


2002 ◽  
Vol 11 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Peggy S. M. Hill ◽  
Cara Hoffart ◽  
Mark Buchheim

Sign in / Sign up

Export Citation Format

Share Document