scholarly journals Dynamic Analysis of Flexible-Link Planar Parallel Manipulator with Platform Rigidity Considerations

Author(s):  
K. V. Varalakshmi
Author(s):  
Abbas Fattah ◽  
Arun K. Misra ◽  
Jorge Angeles

Abstract The subject of this paper is the modeling and simulation of a flexible-link planar parallel manipulator in Cartesian space. Given a desired end-effector motion, the inverse kinematics and inverse dynamics of a rigid-link model of the parallel manipulator is used to obtain actuated joint torques. The actual end-effector motion and vibration of the flexible links are obtained using simulation (direct dynamics) for the flexible-link manipulator. Finite elements are used to model the flexible links, while the Euler-Lagrange formulation is used to derive the equations of motion of the uncoupled links. The equations of motion of all the links are assembled to obtain the governing equations for the entire system. The methodology of the natural orthogonal complement, which has been previously applied to flexible-link systems with open-chain structures, is used here to eliminate the constraint forces. Finally, geometric nonlinearities in elastic deformations, which are very important in high-speed operations, are also considered.


2015 ◽  
Vol 762 ◽  
pp. 101-106 ◽  
Author(s):  
Nadia Ramona Cretescu ◽  
Mircea Neagoe

This paper presents a comparative kinematic and dynamic analysis of a Delta parallel robot based on numerical simulations of the rigid vs. flexible links robot models. The flexible links numerical models are derived using AutoFlex module of Adams software. Finally, the conclusions regarding the obtained results useful in manipulator constructive design are presented.


Author(s):  
Roger Boudreau ◽  
Jérémie Léger ◽  
Hakim Tinaou ◽  
André Gallant

This paper presents the dynamic model of a kinematically redundant planar parallel manipulator and an optimization method to minimize the actuator torques when the end-effector is subjected to a wrench while following a trajectory. A previous study proposed a static approach to solve the same problem. The objective of the work presented here was to verify if the static assumption was valid. Including the dynamic model in the optimization produced some undesirable oscillations and required the use of a different objective function. It is shown that for the application considered, the static approach provided an acceptable solution.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong

To obtain excellent comprehensive performances of the planar parallel manipulator for the high-speed application, an integrated optimal design method, which integrated dimensional synthesis, motors/reducers selection, and control parameters tuning, is proposed, and the 3RRR parallel manipulator was taken as the example. The kinematic and dynamic performances of condition number, velocity index, acceleration capability, and low-order frequency are taken into accounts for the dimensional synthesis. Then, to match motors/reducers parameters and keep an economical cost, the constraint equations and the parameters library are built, and the cost is chosen as one of the optimization objectives. Also, to get high tracking accuracy, the dynamic forward plus proportional–derivative control scheme is introduced, and the tracking error is chosen as one of the optimization objectives. Hence, the optimization model including dimensional synthesis, motors/reducers selection and controller parameters tuning is established, which is solved by the genetic algorithm II (NSGA-II). The result shows that comprehensive performances can be effectively promoted through the proposed integrated optimal design, and the prototype was constructed according to the Pareto-optimal front.


Sign in / Sign up

Export Citation Format

Share Document