MSSM Neutral Higgs Production Cross Section Via Gluon Fusion and Bottom Quark Fusion at NNLO in QCD

2013 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Tetiana Obikhod
2012 ◽  
Vol 27 (07) ◽  
pp. 1250024
Author(s):  
DAPENG YANG ◽  
BINGFANG YANG ◽  
BIN XU

In the framework of the Left–Right Twin Higgs model, we studied the bottom-quark pair production via e+e- collision at the International Linear Collider. We calculated the bottom-quark pair production cross-section at tree level and the relevant differential distributions. The relative correction of the production cross-section is significant and the result will be a sensitive probe of the Left–Right Twin Higgs model.


2016 ◽  
Vol 31 (26) ◽  
pp. 1650151 ◽  
Author(s):  
Ran Ding ◽  
Yizhou Fan ◽  
Li Huang ◽  
Chuang Li ◽  
Tianjun Li ◽  
...  

The ATLAS and CMS Collaborations of the Large Hadron Collider (LHC) have reported an excess of events in diphoton channel with invariant mass of about 750 GeV. With low energy supersymmetry breaking, we systematically consider the sgoldstino scalar S as the new resonance, which is a linear combination of the CP-even scalar [Formula: see text] and CP-odd pseudoscalar [Formula: see text]. Because we show that [Formula: see text] and [Formula: see text] can be degenerated or have large mass splitting, we consider two cases for all the following three scenarios: (1) Single resonance, [Formula: see text] is the 750 GeV resonance decays to a pair of 1 GeV pseudoscalar [Formula: see text] with suitable decay length, these two [Formula: see text] decay into collimated pair of photons which cannot be distinguished at the LHC and may appear as diphotons instead of four photons. (2) Twin resonances, [Formula: see text] with a mass difference of about 40 GeV and both [Formula: see text] and [Formula: see text] decay into diphoton pairs. For productions, we consider three scenarios: (I) vector-boson fusion; (II) gluon–gluon fusion; (III) [Formula: see text] pair production. In all these scenarios with two kinds of resonances, we find the parameter space that satisfies the diphoton production cross-section from 3 to 13 fb and all the other experimental constraints. And we address the decay width as well. In particular, in the third scenario, we observe that the production cross-section is small but the decay width of [Formula: see text] or [Formula: see text] can be from 40 to 60 GeV. Even if the 750 GeV diphoton excesses were not confirmed by the ATLAS and CMS experiments, we point out that our proposal can be used to explain the current and future diphoton excesses.


1988 ◽  
Vol 213 (3) ◽  
pp. 405-412 ◽  
Author(s):  
C. Albajar ◽  
M.G. Albrow ◽  
O.C. Allkofer ◽  
A. Astbury ◽  
B. Aubert ◽  
...  

2005 ◽  
Vol 20 (15) ◽  
pp. 3314-3316
Author(s):  
◽  
DONGWOOK JANG

We present the results of a search for a neutral MSSM Higgs boson decaying to a pair of tau leptons. The analyzed data sample corresponds to integrated luminosity of approximately 200 pb-1 of [Formula: see text] collisions at [Formula: see text]. It was collected by the CDF detector during Run 2 of the Fermilab Tevatron. We select tau pairs in which one of the taus decays hadronically and the other to e or μ and neutrinos. We see no evidence of signal and perform a fit to the (partially) reconstructed di-tau mass to set limits on the product of Higgs production cross-section and its branching fraction to taus.


1996 ◽  
Vol 11 (07) ◽  
pp. 587-598 ◽  
Author(s):  
N. KIDONAKIS ◽  
J. SMITH

The cross-section for bottom quark production is calculated for the HERA-B experiment. We consider both the order [Formula: see text] cross-section and the resummation of soft gluon corrections in all orders of QCD perturbation theory.


Sign in / Sign up

Export Citation Format

Share Document