pair production cross section
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 10)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 136 (12) ◽  
Author(s):  
Paolo Azzurri

AbstractThe FCC-ee physics program will deliver two complementary top-notch precision determinations of the W boson mass, and width. The first and main measurement relies on the rapid rise of the W-pair production cross section near its kinematic threshold. This method is extremely simple and clean, involving only the selection and counting of events, in all different decay channels. An optimal threshold-scan strategy with a total integrated luminosity of $$12\,\mathrm{ab}^{-1}$$ 12 ab - 1 shared on energy points between 157 and 163 GeV will provide a statistical uncertainty on the W mass of 0.5 MeV and on the W width of 1.2 MeV. For these measurements, the goal of keeping the impact of systematic uncertainties below the statistical precision will be demanding, but feasible. The second method exploits the W-pair final state reconstruction and kinematic fit, making use of events with either four jets or two jets, one lepton and missing energy. The projected statistical precision of the second method is similar to the first method’s, with uncertainties of $$\sim 0.5$$ ∼ 0.5 (1) MeV for the W mass (width), employing W-pair data collected at the production threshold and at 240–365 GeV. For the kinematic reconstruction method, the final impact of systematic uncertainties is currently less clear, in particular uncertainties connected to the modeling of the W hadronic decays. The use and interplay of Z$$\gamma $$ γ and ZZ events, reconstructed and fitted with the same techniques as the WW events, will be important for the extraction of W mass measurements with data at the higher 240 and 365 GeV energies.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


2020 ◽  
Vol 35 (34) ◽  
pp. 2050285
Author(s):  
H. C. Manjunatha ◽  
L. Seenappa ◽  
N. Sowmya ◽  
K. N. Sridhar ◽  
B. M. Chandrika

We have proposed the semi-empirical formula for pair production cross-section in nuclear and electric field of atoms with atomic number [Formula: see text] in the energy range of [Formula: see text]. To validate the present formula, the values produced by the proposed formula are compared with the available experiments. The percentage of deviation of present formula pair production was found to be less than [Formula: see text]. The present formula is useful in the fields of radiation, particle and Nuclear Physics.


Sign in / Sign up

Export Citation Format

Share Document