scholarly journals The Developed Consciousness Model Providing Plausible Guidelines to Form a Possible Gross Bridge between Mind and Matter, Present Physics and Cognitive Science, Psychology and Natural Sciences, Classical Physics and Quantum Physics

2013 ◽  
Vol 1 (3) ◽  
pp. 111
Author(s):  
Dhananjay Pal
2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


Istoriya ◽  
2021 ◽  
Vol 12 (8 (106)) ◽  
pp. 0
Author(s):  
Lidia Sofronova

The article presents an analytical review of the recent literature on cognitive history, especially the Russian collective monograph “Cognitive Sciences and Historical Cognition”, published in 2020. It traces the patterns typical for interdisciplinary research not only within the humanitarian disciplines, but also at the “borders” between the humanities and the “natural sciences”. The article highlights the paradoxical and productive nature of the “mutual interventions” of cognitive science and the humanities, which contribute to overcoming “atomism” both within the humanities and at the “frontier” between them and the natural science disciplines.


2013 ◽  
Vol 423-426 ◽  
pp. 2104-2107
Author(s):  
Tatyana N. Gnitetskaya ◽  
Elena V. Karnauhova

A qualitative proof of diamagnetic non-zero magnetization based on the electromagnetic induction law is presented in this paper. Modeling diamagnetic phenomena as a result of Larmor precession or effect of the electromagnetic induction’s law in scale of one hydrogen-like atom performed in classical physics contributes to formation of obviously incorrect idea of the diamagnetic magnetization process in students. It is well-known that the average magnetic moment of a diamagnetic calculated with the help of classical statistics laws is zero which can be explained by quantum character of magnetic phenomena. On the contrary, electromagnetic induction’s law is effective both in classical and quantum physics. Applying it to the diamagnetism problem will allow to solve it for the diamagnetic in whole and to avoid averaging which is proved in the present paper.


1984 ◽  
Vol 39 (2) ◽  
pp. 113-131
Author(s):  
Fritz Bopp

The question is often asked how to interprete quantum physics. That question does not arise in classical physics, since Newton's axioms are immediately connected with basic ideas and experiences. The same is possible in quantum physics, if we remember how elementary particle physicists describe their experiments. As Helmholtz has pointed out. the basic assumption of classical physics is that of geneidentity. That means: Bodies remain the same during their motion. Obviously, that is no longer true in quantum physics. Particles can be created and annihilated. Therefore creation and annihilation must be considered as basic processes. Motion only occurs, if a particle is annihilated in a certain point, if an equal one is created in an infinitesimally neighbouring point, and if this process is continuously going on during a certain time. Motions of that kind are compatible with the existence of some manifest creation and annihilation processes. If we accept this idea, quantum physics can be derived from first principles. As in classical physics, we know therefore what happens from the very beginning. Thus questions of interpretation become dispensable. A particular mathematical method is used to exhaust continua. The theory is formulated in a finite lattice, whose point density and extension equally go to infinity. All calculations are therefore performed in a finite dimensional Hilbert space. The results are however related to an infinite dimensional one. Earlier calculations may, therefore, be essentially correct, though they must be rejected in theories which are based on manifestly infinite dimensional Hilbert spaces. Here limiting processes do not occur in the state space. They are only admissible for numerical results.


2018 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Ike Festiana

Scientific knowledge as well as experiment keeps on growing every day.  Experiments flourished in the seventeenth century. Previously, information about world development was obtained by connecting the roles of prominent epistemology. Experimentation is defined as a planned program for restoring hypotheses by providing empirical evidence to people. Science is a process of seeking the truth. Activities in finding the truth involves a series of scientific method including experiment. The development of physics history is divided into five periods. Period one is indicated by the absence of systematic and independent experiment. In period two, experimental methods had been accountable, and well accepted as a scientific issue. In period three, (investigations developed more rapidly when classical physics development began to be foundation of current famous quantum physics). Period four which is called The Old Quantum Mechanics is indicated by the invention of microscopic phenomena. Period five is well known by the emergence of new quantum mechanics theory.


Sign in / Sign up

Export Citation Format

Share Document