scholarly journals A New Type of Protective Weapon Based on the Creation of a Rotating Powerful Intensive Beam of Electro-Magnetic Waves (Emw) High Frequencies (Hf)

2021 ◽  
Vol 9 (3) ◽  
pp. 59
Author(s):  
Toksan Zhakatayev ◽  
Klara Kakimova
IJOHMN ◽  
2018 ◽  
Vol 4 (6) ◽  
pp. 1-20
Author(s):  
Aju Mukhopadhyay

A world leader in telecommunications, Bose was a significant figure behind the creation of modern radio and sonic technology. In 1896 his work was commemorated by IEEE as the oldest "milestone achievement" from Asia. In 1997 the Institute of Electrical and Electronic Engineers of America named Bose as a “Father of Radio Science.” Royal Society of England was impressed by a research paper of Bose on electro-magnetic waves and they honoured him with a Degree of Doctorate in Science. He was knighted in 1917, and made a Fellow of the Royal Society in 1920 (the first Indian to become a fellow for science as opposed to mathematics). Acharya Bose is considered as the Father of Indian Science.


2009 ◽  
Vol 129 (12) ◽  
pp. 915-921 ◽  
Author(s):  
Hideki Ueno ◽  
Takashi Nagamachi ◽  
Masaki Nakamura ◽  
Hiroshi Nakayama ◽  
Kunihiko Kakihana

Author(s):  
Zhang Hong ◽  
Wei-qing Cao ◽  
Ting Li Yang ◽  
Jin Kui Chu

Abstract This paper is the second of a series of two papers which designed a new type of load balancing mechanisms for planetary gearings with arbitrary number of planets. In this paper the common expression of the non-uniform load share factor was deduced, and a function parameter:force-arm factor and their solution was given. That makes it possible that the dimensions and the ability of load equilibrium of Multi-Link Load Balancing Mechanisms can be determined. The criteria of optimum load balancing Mechanisms selection were set up with consider of the effects of turning pair clearances, and optimum mechanisms were selected among the 15 candidates obtained in Part 1. Finally, it was demonstrated that the optimum multi-link load balancing mechanisms for arbitrary number of planets had the similar topological structures and same function and performence of load equilibrium.


Author(s):  
Braden Czapla ◽  
Yi Zheng ◽  
Karthik Sasihithlu ◽  
Arvind Narayanaswamy

Near-field effects in radiative transfer refer to the collective influence of interference, diffraction, and tunneling of electro-magnetic waves on energy transfer between two or more objects. Most studies of near-field radiative transfer have so far focused on the enhancement due to tunneling of surface polaritons. In this work, we show the existence of sharp peaks in the radiative transfer spectrum between two spheres of polar materials that are not due to surface polaritons. The peaks, which are present on either side of the restrahlen band, are because of Mie resonances.


1958 ◽  
Vol 11 (2) ◽  
pp. 95-103 ◽  
Author(s):  
A. C. Butcher ◽  
J. S. Lowndes

Much of the work on the theory of diffraction by an infinite wedge has been for cases of harmonic time-dependence. Oberhettinger (1) obtained an expression for the Green's function of the wave equation in the two dimensional case of a line source of oscillating current parallel to the edge of a wedge with perfectly conducting walls. Solutions of the time-dependent wave equation have been obtained by Keller and Blank (2), Kay (3) and more recently by Turner (4) who considered the diffraction of a cylindrical pulse by a half plane.


1973 ◽  
Vol 58 (3) ◽  
pp. 595-621 ◽  
Author(s):  
H. A. Scarton ◽  
W. T. Rouleau

In this paper the first thirty-two axisymmetric modes for steady-periodic waves in viscous compressible liquids contained in rigid, impermeable, circular tubes are calculated. These results end long speculation over the effects of viscosity on guided acoustic waves. Sixteen of the modes belong to a family of rotation-dominated modes whose existence was previously unknown. The thirty-two modes were computed for a wide range of frequencies, viscosities and wave-lengths.The modes were found through the use of the method of eigenvalleys, which also led to the discovery of backward-propagating waves, an exact analytical expression for the zeroth rotational mode eigenvalue, definitive boundaries between low and intermediate frequencies and between intermediate and high frequencies, and a new type of boundary layer, called a dilatational boundary layer.


Sign in / Sign up

Export Citation Format

Share Document