Absence of SV40 Large T-Antigen Expression in Human Mesothelioma Cell Lines

2000 ◽  
Vol 23 (6) ◽  
pp. 788-793 ◽  
Author(s):  
Yannick Pilatte ◽  
Claire Vivo ◽  
Annie Renier ◽  
Laurence Kheuang ◽  
Anne Greffard ◽  
...  
1986 ◽  
Vol 6 (4) ◽  
pp. 1204-1217
Author(s):  
P S Jat ◽  
C L Cepko ◽  
R C Mulligan ◽  
P A Sharp

We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.


1995 ◽  
Vol 217 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Sharon A. King ◽  
Sandra J. Wilson ◽  
Rosann A. Farber ◽  
William K. Kaufmann ◽  
Marila Cordeiro-Stone

1997 ◽  
Vol 6 (3) ◽  
pp. 231-238 ◽  
Author(s):  
M.E. Truckenmiller ◽  
Ora Dillon-Carter ◽  
Carlo Tornatore ◽  
Henrietta Kulaga ◽  
Hidetoshi Takashima ◽  
...  

In vitro growth properties of three CNS-derived cell lines were compared under a variety of culture conditions. The M213-20 and J30a cell lines were each derived from embryonic CNS culture with the temperature-sensitive (ts) allele of SV40 large T antigen, tsA58, while the A7 cell line was immortalized using wild-type SV40 large T antigen. Cells immortalized with tsA58 SV40 large T proliferate at the permissive temperature, 33° C, while growth is expected to be suppressed at the nonpermissive temperature, 39.5°C. Both the M213-20 and J30a cell lines were capable of proliferating at 39.5°C continuously for up to 6 mo. All three cell lines showed no appreciable differences in growth rates related to temperature over a 7-day period in either serum-containing or defined serum-free media. The percentage of cells in S-phase of the cell cycle did not decrease or was elevated at 39.5°C for all three cell lines. After 3 wk at 39.5°C, the three cell lines also showed positive immunostaining using two monoclonal antibodies reacting with different epitopes of SV40 large T antigen. Double strand DNA sequence analyses of a 300 base pair (bp) fragment of the large T gene from each cell line, which included the ts locus, revealed mutations in both the J30a and M213-20 cell lines. The J30a cell line ts mutation had reverted to wild type, and two additional loci with bp substitutions with predicted amino acid changes were also found. While the ts mutation of the M213-20 cells was retained, an additional bp substitution with a predicted amino acid change was found. The A7 cell line sequence was identical to the reference wild-type sequence. These findings suggest that (a) nucleic acid sequences in the temperature-sensitive region of the tsA58 allele of SV40 large T are not necessarily stable, and (b) temperature sensitivity of cell lines immortalized with tsA58 is not necessarily retained.


2001 ◽  
Vol 53 (4) ◽  
pp. 372-380 ◽  
Author(s):  
G. Bredholt ◽  
O.P. Rekvig ◽  
K. Andreassen ◽  
U. Moens ◽  
T.N. Marion

1986 ◽  
Vol 6 (4) ◽  
pp. 1204-1217 ◽  
Author(s):  
P S Jat ◽  
C L Cepko ◽  
R C Mulligan ◽  
P A Sharp

We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.


Author(s):  
Lucia Cappabianca ◽  
Stefano Guadagni ◽  
Rita Maccarone ◽  
Michela Sebastiano ◽  
Alessandro Chiominto ◽  
...  

Abstract Background Merkel cell carcinomas (MCCs) are rare, aggressive, therapeutically-challenging skin tumours that are increasing in incidence and have poor survival rates. The majority are caused by genomic Merkel cell polyomavirus (MCPyV) integration and MCPyV T-antigen expression. Recently, a potential oncogenic role for the tropomyosin-related tyrosine kinase A receptor (TrkA) has been proposed in MCC. Alternative TrkAIII splicing is a TrkA oncogenic activation mechanism that can be promoted by SV40 large T-antigen, an analogue of MCPyV large T-antigen. In this pilot study, therefore, we have evaluated TrkAIII splicing as a novel potential oncogenic mechanism and therapeutic target in MCPyV positive MCC. Methods Formalin-fixed paraffin-embedded MCC tissues, consisting of 10 stage IV, 1 stage IIIB, 1 stage IIB, 4 stage IIA and 2 stage I tumours, from patients diagnosed and treated from September 2006 to March, 2019, at the University of L’Aquila, L’Aquila, Italy, were compared to 3 primary basal cell carcinomas (BCCs), 3 primary squamous cell carcinomas (SCCs) and 2 normal skin samples by RT-PCR for MCPyV large T-antigen, small T-antigen, VP-1 expression and alternative TrkAIII splicing and by indirect IF for evidence of intracellular TrkA isoform expression and activation. Results 9 of 10 Recurrent stage IV MCCs were from patients (P.1–3) treated with surgery plus loco-regional Melphalan chemotherapy and remaining MMCs, including 1 stage IV tumour, were from patients treated with surgery alone (P. 4–11). All MCPyV positive MCCs exhibiting MCPyV large T-antigen expression (17 of 18MCCs, 90%) exhibited alternative TrkAIII mRNA splicing (100%), which was exclusive in a significant number and predominant (> 50%) in all stage IV MCCs and the majority of stage 1-III MCCs. MCCs with higher TrkAIII to 18S rRNA expression ratios also exhibited strong or intermediate immunoreactivity to anti-TrkA antibodies, consistent with cytoplasmic TrkAIII expression and activation. In contrast, the MCPyV negative MCC, BCCs, SCCs and normal skin tissues all exhibited exclusive fully-spliced TrkA mRNA expression, associated with variable immunoreactivity for non-phosphorylated but not phosphorylated TrkA. Conclusions MCPyV positive MCCs but not MCPyV negative MCC, BCCs and SCCs exhibit predominant alternative TrkAIII splicing, with evidence of intracellular TrkAIII activation. This establishes a new potential MCC subset, unveils a novel potential MCPyV oncogenic mechanism and identifies TrkAIII as a novel potential therapeutic target in MCPyV positive MCC.


1996 ◽  
Vol 16 (3) ◽  
pp. 884-891 ◽  
Author(s):  
G M D'Abaco ◽  
R H Whitehead ◽  
A W Burgess

Colon carcinomas appear to arise from the cumulative effect of mutations to several genes (APC, DCC, p53, ras, hMLH1, and hMSH2). By using novel colonic epithelial cell lines derived from the Immorto mouse, named the YAMC (young adult mouse colon) cell line, and an Immorto-Min mouse hybrid, named the IMCE (Immorto-Min colonic epithelial) cell line, carrying the Apc min mutation, we investigated the effect of an activated v-Ha-ras gene on tumor progression. The YAMC and IMCE cell lines are normal colonic epithelial cell lines which are conditionally immortalized by virtue of expression of a temperature-sensitive simian virus 40 (SV40) large T antigen. Under conditions which permit expression of a functional SV40 large T antigen (33 degrees C plus gamma interferon), neither the YAMC nor the IMCE cell line grows in soft agar or is tumorigenic in nude mice. In vitro, when the SV40 large T antigen is inactivated (39 degrees C without gamma interferon), the cells stop proliferating and die. By infecting the YAMC and IMCE cell lines with a replication-defective psi2-v-Ha-ras virus, we derived cell lines which overexpress the v-Ha-ras gene (YAMC-Ras and IMCE-Ras). In contrast to the parental cell lines, under conditions in which the SV40 large T antigen is inactive, both the YAMC-Ras and IMCE-Ras cell lines continue to proliferate. Initally YAMC-Ras cells do not form tumors; however, tumors are visible after 90 days of incubation. IMCE-Ras cells form colonies in soft agar under both permissive and nonpermissive culture conditions. Furthermore, IMCE-Ras cells form tumors in nude mice within 3 weeks. The phenotype of the IMCE-Ras cell line thus clearly demonstrates that a defective Apc allele and an activated ras gene are sufficient to transform normal colonic epithelial cells and render them tumorigenic.


Sign in / Sign up

Export Citation Format

Share Document