Adjuvant and Anti-Inflammatory Properties of Cigarette Smoke in Murine Allergic Airway Inflammation

2009 ◽  
Vol 40 (1) ◽  
pp. 38-46 ◽  
Author(s):  
Nancy J. Trimble ◽  
Fernando M. Botelho ◽  
Carla M. T. Bauer ◽  
Ramzi Fattouh ◽  
Martin R. Stämpfli
2018 ◽  
Vol 32 ◽  
pp. 205873841877489 ◽  
Author(s):  
Eiko Koike ◽  
Rie Yanagisawa ◽  
Tin-Tin Win-Shwe ◽  
Hirohisa Takano

Bisphenol A (BPA) is used in the production of polycarbonate plastics and epoxy resins and found in many consumer products. Previous studies have reported that perinatal exposure to BPA through the oral route promotes the development of allergic airway inflammation. We investigated the effects of exposure to low-dose BPA during the juvenile period of development on allergic airway inflammation. Six-week-old male C3H/HeJ mice were intratracheally administered ovalbumin (OVA, 1 μg) every 2 weeks and/or BPA (0, 0.0625, 1.25, and 25 pmol/animal/week) once per week for 6 weeks. Following the final intratracheal instillation, we examined the cellular profile of the bronchoalveolar lavage fluid, histological changes and expression of inflammatory/anti-inflammatory mediators in the lungs, OVA-specific immunoglobulin (Ig) production, serum corticosterone levels, and changes in the lymphoid tissues (mediastinal lymph node (MLN) and spleen). Exposure to OVA + BPA enhanced inflammatory cell infiltration and protein expression of Th2 cytokines/chemokines (e.g. interleukin (IL)-13 and IL-33) in the lungs, OVA-specific immunoglobulin E (IgE) production, the numbers of total cells and activated antigen-presenting cells (MHC class II+ CD86+, CD11c+), as well as the production of Th2 cytokines (i.e. IL-4 and IL-5) and stromal cell-derived factor-1α in MLN cells compared to OVA exposure alone. These effects were more prominent with 0.0625 or 1.25 pmol/animal/week of BPA. Furthermore, exposure to OVA + BPA altered serum levels of anti-inflammatory corticosterone, estrogen receptor 2 messenger RNA (mRNA) expression in the lungs and spleen functionality. These findings suggest that low-dose BPA exposure may aggravate allergic airway inflammation by enhancing Th2 responses via disruption of the immune system.


2009 ◽  
Vol 183 (4) ◽  
pp. 2758-2766 ◽  
Author(s):  
Lander J. Robays ◽  
Ellen A. Lanckacker ◽  
Katrien B. Moerloose ◽  
Tania Maes ◽  
Ken R. Bracke ◽  
...  

2020 ◽  
Vol 12 (540) ◽  
pp. eaay0605 ◽  
Author(s):  
Marta de los Reyes Jiménez ◽  
Antonie Lechner ◽  
Francesca Alessandrini ◽  
Sina Bohnacker ◽  
Sonja Schindela ◽  
...  

Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1α (HIF-1α), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in HpbE. Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, which has important implications for the therapy of allergy and asthma.


2019 ◽  
Vol 10 ◽  
Author(s):  
Boae Lee ◽  
Yeonye Kim ◽  
Young Mi Kim ◽  
Jaehoon Jung ◽  
Taehyung Kim ◽  
...  

2009 ◽  
Vol 183 (2) ◽  
pp. 1074-1082 ◽  
Author(s):  
Mirjam Kool ◽  
Menno van Nimwegen ◽  
Monique A. M. Willart ◽  
Femke Muskens ◽  
Louis Boon ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. L412-L421 ◽  
Author(s):  
Thomas H. Thatcher ◽  
Randi P. Benson ◽  
Richard P. Phipps ◽  
Patricia J. Sime

Epidemiological studies have identified childhood exposure to environmental tobacco smoke as a significant risk factor for the onset and exacerbation of asthma, but studies of smoking in adults are less conclusive, and mainstream cigarette smoke (MCS) has been reported to both enhance and attenuate allergic airway inflammation in animal models. We sensitized mice to ovalbumin (OVA) and exposed them to MCS in a well-characterized exposure system. Exposure to MCS (600 mg/m3 total suspended particulates, TSP) for 1 h/day suppresses the allergic airway response, with reductions in eosinophilia, tissue inflammation, goblet cell metaplasia, IL-4 and IL-5 in bronchoalveolar lavage (BAL) fluid, and OVA-specific antibodies. Suppression is associated with a loss of antigen-specific proliferation and cytokine production by T cells. However, exposure to a lower dose of MCS (77 mg/m3 TSP) had no effect on the number of BAL eosinophils or OVA-specific antibodies. This is the first report to demonstrate, using identical smoking methodologies, that MCS inhibits immune responses in a dose-dependent manner and may explain the observation that, although smoking provokes a systemic inflammatory response, it also inhibits T cell-mediated responses involved in a number of diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1763
Author(s):  
Núbia Sabrina Martins ◽  
Thais Fernanda de Campos Fraga-Silva ◽  
Giseli Furlan Correa ◽  
Mèdéton Mahoussi Michaël Boko ◽  
Leandra Naira Zambelli Ramalho ◽  
...  

Propolis is a natural product produced by bees that is primarily used in complementary and alternative medicine and has anti-inflammatory, antibacterial, antiviral, and antitumoral biological properties. Some studies have reported the beneficial effects of propolis in models of allergic asthma. In a previous study, our group showed that green propolis treatment reduced airway inflammation and mucus secretion in an ovalbumin (OVA)-induced asthma model and resulted in increased regulatory T cells (Treg) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) frequencies in the lungs, two leukocyte populations that have immunosuppressive functions. In this study, we evaluated the anti-inflammatory effects of artepillin C (ArtC), the major compound of green propolis, in the context of allergic airway inflammation. Our results show that ArtC induces in vitro differentiation of Treg cells and monocytic MDSC (M-MDSC). Furthermore, in an OVA-induced asthma model, ArtC treatment reduced pulmonary inflammation, eosinophil influx to the airways, mucus and IL-5 secretion along with increased frequency of M-MDSC, but not Treg cells, in the lungs. Using an adoptive transfer model, we confirmed that the effect of ArtC in the reduction in airway inflammation was dependent on M-MDSC. Altogether, our data show that ArtC exhibits an anti-inflammatory effect and might be an adjuvant therapy for allergic asthma.


Sign in / Sign up

Export Citation Format

Share Document