scholarly journals Artepillin C Reduces Allergic Airway Inflammation by Induction of Monocytic Myeloid-Derived Suppressor Cells

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1763
Author(s):  
Núbia Sabrina Martins ◽  
Thais Fernanda de Campos Fraga-Silva ◽  
Giseli Furlan Correa ◽  
Mèdéton Mahoussi Michaël Boko ◽  
Leandra Naira Zambelli Ramalho ◽  
...  

Propolis is a natural product produced by bees that is primarily used in complementary and alternative medicine and has anti-inflammatory, antibacterial, antiviral, and antitumoral biological properties. Some studies have reported the beneficial effects of propolis in models of allergic asthma. In a previous study, our group showed that green propolis treatment reduced airway inflammation and mucus secretion in an ovalbumin (OVA)-induced asthma model and resulted in increased regulatory T cells (Treg) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) frequencies in the lungs, two leukocyte populations that have immunosuppressive functions. In this study, we evaluated the anti-inflammatory effects of artepillin C (ArtC), the major compound of green propolis, in the context of allergic airway inflammation. Our results show that ArtC induces in vitro differentiation of Treg cells and monocytic MDSC (M-MDSC). Furthermore, in an OVA-induced asthma model, ArtC treatment reduced pulmonary inflammation, eosinophil influx to the airways, mucus and IL-5 secretion along with increased frequency of M-MDSC, but not Treg cells, in the lungs. Using an adoptive transfer model, we confirmed that the effect of ArtC in the reduction in airway inflammation was dependent on M-MDSC. Altogether, our data show that ArtC exhibits an anti-inflammatory effect and might be an adjuvant therapy for allergic asthma.

2012 ◽  
Vol 129 (2) ◽  
pp. AB242
Author(s):  
Q. Guan ◽  
S. Moreno ◽  
C. Weiss ◽  
Q. Gefei ◽  
A. Halayko ◽  
...  

2016 ◽  
Vol 38 ◽  
pp. 261-266 ◽  
Author(s):  
Yi Gao ◽  
Liu Zhaoyu ◽  
Fang Xiangming ◽  
Lin Chunyi ◽  
Pan Jiayu ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingru Wang ◽  
Shengnan Gao ◽  
Jingyuan Zhang ◽  
Chunxiao Li ◽  
Hongwen Li ◽  
...  

Abstract Background Allergic asthma is a chronic airway inflammatory disease with a number of cytokines participating in its pathogenesis and progress. Interleukin (IL)-22, which is derived from lymphocytes, acts on epithelial cells and play a role in the chronic airway inflammation. However, the actual role of IL-22 in allergic asthma is still unclear. Therefore, we explored the effect of IL-22 on allergic airway inflammation and airway hyperresponsiveness (AHR) in an ovalbumin (OVA)-induced asthma mouse model. Methods To evaluate the effect of IL-22 in an allergic asthma model, BALB/c mice were sensitized and challenged with OVA; then the recombinant mouse IL-22 was administered intranasally 24 h prior to each challenge. The IL-22 levels in lung homogenates and bronchoalveolar lavage fluid (BALF) were measured by enzyme linked immunosorbent assay, respectively. AHR was evaluated through indicators including airways resistance (Rrs), elastance (Ers) and compliance (Crs); the inflammatory cell infiltration was assessed by quantification of differential cells counts in BALF and lung tissues stained by hematoxylin and eosin (H&E); IL-22 specific receptors were determined by immunohistochemistry staining. Results The concentration of IL-22 was significantly elevated in the OVA-induced mice compared with the control mice in lung homogenates and BALF. In the OVA-induced mouse model, IL-22 administration could significantly attenuate AHR, including Rrs, Ers and Crs, decrease the proportion of eosinophils in BALF and reduce inflammatory cell infiltration around bronchi and their concomitant vessels, compared with the OVA-induced group. In addition, the expression of IL-22RA1 and IL-10RB in the lung tissues of OVA-induced mice was significantly increased compared with the control mice, while it was dramatically decreased after the treatment with IL-22, but not completely attenuated in the IL-22-treated mice when compared with the control mice. Conclusion Interleukin-22 could play a protective role in an OVA-induced asthma model, by suppressing the inflammatory cell infiltration around bronchi and their concomitant vessels and airway hyperresponsiveness, which might associate with the expression of its heterodimer receptors. Thus, IL-22 administration might be an effective strategy to attenuate allergic airway inflammation.


2021 ◽  
Vol 25 (4) ◽  
pp. 2279-2284
Author(s):  
Yimin Guo ◽  
Jianting Shi ◽  
Qiujie Wang ◽  
Luna Hong ◽  
Ming Chen ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2238
Author(s):  
Nao Nagai ◽  
Yotaro Kudo ◽  
Daisuke Aki ◽  
Hayato Nakagawa ◽  
Koji Taniguchi

Chronic inflammation is thought to promote tumorigenesis and metastasis by several mechanisms, such as affecting tumor cells directly, establishing a tumor-supporting microenvironment, enhancing tumor angiogenesis, and suppressing antitumor immunity. In this review, we discuss the recent advances in our understanding of how inflammation induces the immunosuppressive tumor microenvironment, such as increasing the level of pro-inflammatory cytokines, chemokines, and immunosuppressive molecules, inducing immune checkpoint molecules and cytotoxic T-cell exhaustion, and accumulating regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). The suppression of antitumor immunity by inflammation is especially examined in the liver and colorectal cancer. In addition, chronic inflammation is induced during aging and causes age-related diseases, including cancer, by affecting immunity. Therefore, we also discuss the age-related diseases regulated by inflammation, especially in the liver and colon.


2010 ◽  
Vol 33 (3) ◽  
pp. 196 ◽  
Author(s):  
Xia Ke ◽  
Jiangju Huang ◽  
Quan Chen ◽  
Suling Hong ◽  
Daoyin Zhu

Purpose. Allergic asthma is characterized by chronic airway inflammation and airway hyperresponsiveness driven by allergen-specific T helper (Th)2 cells. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination has been documented to suppress Th2 responses and allergic airway inflammation in animal models. Since interleukin (IL)-12 is capable of inhibiting Th2 responses, we sought to investigate whether IL-12 could function as an adjuvant to increase the efficacy of BCG vaccination against allergic asthma. Methods. BALB/c neonatal mice (24 mice, 48-72 h old) were randomly divided into 3 subgroups (n = 8 for each group) to be immunized with PBS (control) or BCG with or without DNA plasmid-expressing IL-12. All of the mice were then sensitized and provoked with ovalbumin (OVA) to establish a model of allergic asthma. Results. Mice vaccinated with BCG alone showed a significant reduction in airway inflammation, percentage of eosinophils in bronchoalveolar lavage (BAL) fluid, and serum OVA-specific immunoglobulin E (IgE) levels in comparison with control animals. The suppressive effects of BCG were substantially augmented by the combination with IL-12. Furthermore, a decreased IL-4 and increased interferon-gamma (IFN-γ) production in BAL fluid were observed in animals inoculated with BCG alone or with IL-12 relative to control animals. Conclusion. Our data indicate that the combined vaccination with BCG and IL-12 yields a favorable outcome in prevention of experimental allergic airway inflammation, which is likely mediated through triggering a shift from a Th2 response to a Th1 response.


Author(s):  
Zhidan Li ◽  
Wei Zhang ◽  
Fang Luo ◽  
Jian Li ◽  
Wenbin Yang ◽  
...  

Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.


Allergy ◽  
2019 ◽  
Vol 74 (11) ◽  
pp. 2233-2237 ◽  
Author(s):  
Qingdong Guan ◽  
Bin Yang ◽  
Richard J. Warrington ◽  
Steven Mink ◽  
Chrystyna Kalicinsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document