Molecular Docking Studies of Enzyme Binding Drugs on Family of Cytochrome P450

2020 ◽  
Vol 12 (1) ◽  
pp. 83-87
Author(s):  
Rolly Yadav ◽  
Anwesh Pandey ◽  
Nidhi Awasthi ◽  
Anamika Shukla

The combination of experimental and computational strategies has been of great value in the identification and development of metabolism of drugs. Nowadays modern drug design, molecular docking methods are helpful in exploring the ligand conformations adopted within the binding sites of macro-molecular targets such as DNA, proteins, and enzymes, there by reducing cost, time and wayward efforts of chemist. Since the development of the algorithms in the 1980s, molecular docking became an important tool in drug discovery like investigation of crucial molecular events, including ligand binding modes and the corresponding intermolecular interactions that stabilize the ligand-receptor complex, can be conveniently performed. In present study we have tried to investigate the drug binding pocket of various cytochrome (CYP) enzymes found in humans. All structures of drugs are optimized at B3LYP/6-31** level of theory using Gaussian program suite. Docking of substrate-enzyme duo was done using AUTODOCK 4.0. Computational docking revealed that almost all drugs have same binding pocket with varied binding affinities due to change in interactions and interacting distance from heme prosthetic moiety with transition metal iron as chelating ion.

Author(s):  
Sanchaita Rajkhowa ◽  
Ramesh C. Deka

Molecular docking is a key tool in structural biology and computer-assisted drug design. Molecular docking is a method which predicts the preferred orientation of a ligand when bound in an active site to form a stable complex. It is the most common method used as a structure-based drug design. Here, the authors intend to discuss the various types of docking methods and their development and applications in modern drug discovery. The important basic theories such as sampling algorithm and scoring functions have been discussed briefly. The performances of the different available docking software have also been discussed. This chapter also includes some application examples of docking studies in modern drug discovery such as targeted drug delivery using carbon nanotubes, docking of nucleic acids to find the binding modes and a comparative study between high-throughput screening and structure-based virtual screening.


Oncology ◽  
2017 ◽  
pp. 891-914
Author(s):  
Sanchaita Rajkhowa ◽  
Ramesh C. Deka

Molecular docking is a key tool in structural biology and computer-assisted drug design. Molecular docking is a method which predicts the preferred orientation of a ligand when bound in an active site to form a stable complex. It is the most common method used as a structure-based drug design. Here, the authors intend to discuss the various types of docking methods and their development and applications in modern drug discovery. The important basic theories such as sampling algorithm and scoring functions have been discussed briefly. The performances of the different available docking software have also been discussed. This chapter also includes some application examples of docking studies in modern drug discovery such as targeted drug delivery using carbon nanotubes, docking of nucleic acids to find the binding modes and a comparative study between high-throughput screening and structure-based virtual screening.


Author(s):  
Suman Rohilla ◽  
Ranju Bansal ◽  
Puneet Chauhan ◽  
Sonja Kachler ◽  
Karl-Norbert Klotz

Background: Adenosine receptors (AR) have emerged as competent and innovative nondopaminergic targets for the development of potential drug candidates and thus constitute an effective and safer treatment approach for Parkinson’s disease (PD). Xanthine derivatives are considered as potential candidates for the treatment Parkinson’s disease due to their potent A2A AR antagonistic properties. Objective: The objectives of the work are to study the impact of substituting N7-position of 8-m/pchloropropoxyphenylxanthine structure on in vitro binding affinity of compounds with various AR subtypes, in vivo antiparkinsonian activity and binding modes of newly synthesized xanthines with A2A AR in molecular docking studies. Methods: Several new 7-substituted 8-m/p-chloropropoxyphenylxanthine analogues have been prepared. Adenosine receptor binding assays were performed to study the binding interactions with various subtypes and perphenazine induced rat catatonia model was used for antiparkinsonian activity. Molecular docking studies were performed using Schrödinger molecular modeling interface. Results: 8-para-substituted xanthine 9b bearing an N7-propyl substituent displayed the highest affinity towards A2A AR (Ki = 0.75 µM) with moderate selectivity versus other AR subtypes. 7-Propargyl analogue 9d produced significantly longlasting antiparkinsonian effects and also produced potent and selective binding affinity towards A2A AR. In silico docking studies further highlighted the crucial structural components required to develop xanthine derived potential A2A AR ligands as antiparkinsonian agents. Conclusion: A new series of 7-substituted 8-m/p-chloropropoxyphenylxanthines having good affinity for A2A AR and potent antiparkinsonian activity has been developed.


2021 ◽  
Vol 14 (7) ◽  
pp. 685
Author(s):  
Sandra Amanda Kozieł ◽  
Monika Katarzyna Lesiów ◽  
Daria Wojtala ◽  
Edyta Dyguda-Kazimierowicz ◽  
Dariusz Bieńko ◽  
...  

A group of cytotoxic half-sandwich iridium(III) complexes with aminomethyl(diphenyl)phosphine derived from fluoroquinolone antibiotics exhibit the ability to (i) accumulate in the nucleus, (ii) induce apoptosis, (iii) activate caspase-3/7 activity, (iv) induce the changes in cell cycle leading to G2/M phase arrest, and (v) radicals generation. Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, circular dichroism, and molecular docking studies. DNA binding experiments established that the complexes interact with DNA by moderate intercalation and predominance of minor groove binding without the capability to cause a double-strand cleavage. The molecular docking study confirmed two binding modes: minor groove binding and threading intercalation with the fluoroquinolone part of the molecule involved in pi stacking interactions and the Ir(III)-containing region positioned within the major or minor groove. Fluorescence spectroscopic data (HSA and apo-Tf titration), together with molecular docking, provided evidence that Ir(III) complexes can bind to the proteins in order to be transferred. All the compounds considered herein were found to bind to the tryptophan residues of HSA within site I (subdomain II A). Furthermore, Ir(III) complexes were found to dock within the apo-Tf binding site, including nearby tyrosine residues.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Oluwasegun Bamidele ◽  
George Oche Ambrose ◽  
Oluwaseun Suleiman Alakanse

AbstractHSP90 is observed as one of the copious molecular chaperones that play a key role in mediating appropriate folding, maturation, and firmness of many client proteins in cells. The expression rate of HSP90 in cancer cells is at a level of 2- to 10-fold higher than the 1- to 2-fold of its unstressed and healthy ones. To combat this, several inhibitors to HSP90 protein have been studied (such as geldanamycin and its derivative 17-AAG and 17-DMAG) and have shown some primary side effects including plague, nausea, vomiting, and liver toxicity, hence the search for the best-in-class inhibitor for this protein through in silico. This study is aimed at analyzing the inhibitory potency of oxypeucedanin-a furocoumarin derivations, which have been reported to have antipoliferative activity in human prostrate carcinoma DN145 cells, and three other drug candidates retrieved from the literature via computational docking studies. The results showed oxypeucedanin as the compound with the highest binding energy of −9.2 kcal/mol. The molecular docking study was carried out using PyRx, Auto Dock Vina option, and the target was validated to confirm the proper target and the docking procedure employed for this study.


2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1425
Author(s):  
Yuvaraj Dinakarkumar ◽  
Jothi Ramalingam Rajabathar ◽  
Selvaraj Arokiyaraj ◽  
Iyyappan Jeyaraj ◽  
Sai Ramesh Anjaneyulu ◽  
...  

Methane is a greenhouse gas which poses a great threat to life on earth as its emissions directly contribute to global warming and methane has a 28-fold higher warming potential over that of carbon dioxide. Ruminants have been identified as a major source of methane emission as a result of methanogenesis by their respective gut microbiomes. Various plants produce highly bioactive compounds which can be investigated to find a potential inhibitor of methyl-coenzyme M reductase (the target protein for methanogenesis). To speed up the process and to limit the use of laboratory resources, the present study uses an in-silico molecular docking approach to explore the anti-methanogenic properties of phytochemicals from Cymbopogon citratus, Origanum vulgare, Lavandula officinalis, Cinnamomum zeylanicum, Piper betle, Cuminum cyminum, Ocimum gratissimum, Salvia sclarea, Allium sativum, Rosmarinus officinalis and Thymus vulgaris. A total of 168 compounds from 11 plants were virtually screened. Finally, 25 scrutinized compounds were evaluated against methyl-coenzyme M reductase (MCR) protein using the AutoDock 4.0 program. In conclusion, the study identified 21 out of 25 compounds against inhibition of the MCR protein. Particularly, five compounds: rosmarinic acid (−10.71 kcal/mol), biotin (−9.38 kcal/mol), α-cadinol (−8.16 kcal/mol), (3R,3aS,6R,6aR)-3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one (−12.21 kcal/mol), and 2,4,7,9-tetramethyl-5decyn4,7diol (−9.02 kcal/mol) showed higher binding energy towards the MCR protein. In turn, these compounds have potential utility as rumen methanogenic inhibitors in the proposed methane inhibitor program. Ultimately, molecular dynamics simulations of rosmarinic acid and (3R,3aS,6R,6aR) -3-(2H-1,3-benzodioxol-4-yl)-6-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-one yielded the best possible interaction and stability with the active site of 5A8K protein for 20 ns.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1789 ◽  
Author(s):  
Julia Krzywik ◽  
Witold Mozga ◽  
Maral Aminpour ◽  
Jan Janczak ◽  
Ewa Maj ◽  
...  

Colchicine is a well-known compound with strong antiproliferative activity that has had limited use in chemotherapy because of its toxicity. In order to create more potent anticancer agents, a series of novel colchicine derivatives have been obtained by simultaneous modification at C7 (amides and sulfonamides) and at C10 (methylamino group) positions and characterized by spectroscopic methods. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX and BALB/3T3 cell lines. Additionally, the activity of the studied compounds was investigated using computational methods involving molecular docking of the colchicine derivatives to β-tubulin. The majority of the obtained derivatives exhibited higher cytotoxicity than colchicine, doxorubicin or cisplatin against tested cancer cell lines. Furthermore, molecular modeling studies of the obtained compounds revealed their possible binding modes into the colchicine binding site of tubulin.


Author(s):  
SANGEETA RANI ◽  
KAVITA GAHLOT ◽  
ARVIND KUMAR

Objective: The purpose of this study was to investigate the diabetic effect of phytocompounds isolated from Cressa cretica Linn. using spectroscopic analysis and molecular docking studies. Methods: Coarse powder of the whole plant of C. cretica was extracted with methanol, extracted part was subjected to silica column isolation, and two compounds: 2-Isopropyl-4-(1-methyl-dodeca-2,4-dienyloxy)-benzene-1,3,5-triol (Compound CN-01) and 11-Methyl-dodeca-2,4,6,8,10-pentenoic acid 2,3-dihydroxy-5-methyl-phenyl ester (Compound CN-02) were isolated in pure form. The three-dimensional structure of target protein was downloaded from PDB (www.rcsb.org) Protein Data Bank, Ligand file CN – 01 and CN – 02 were converted to MDL Molfile (V2000) format using ChemSketch 2017.2.1. These files could not be used directly in AutoDock 4.0 tools; thus, they were first converted to PDB files using an open babel tool. Results: Compounds were revealed through spectroscopic analysis and screened using AutoDock 4.0 tools. Docking study recommended that CN – 01 and CN – 02 an existing phytochemical from the plant of C. cretica had the highest fitness docking score and hence could be a potent antidiabetic drug. Conclusion: In this investigation, we docked the receptor (glycogen phosphorylase protein) holds a promising lead target formation against diabetes based on molecular docking analysis (minimum hydrogen bond length and maximum docked score). Thus, these compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.


Author(s):  
Nguyen Truong Tien ◽  
Bui Tho Thanh

The HIV/AIDS epidemic has become one of the most dangerous causes leading to millions of deaths around the world a year. To date, there have not had effective anti-HIV drugs in the treatment of HIV/AIDS because of emerging drug-resistant HIV mutants. In this work, potential non-nucleoside reverse transcriptase inhibitors (NNRTIs) were studied by means of molecular docking. The Diversity “drug-like” database from the National Cancer Institute, is composed of 1.420 compounds, was performed docking into the NNRTI binding pocket of HIV-1 reverse transcriptase crystal structure (1fk9) by using Autodock version 4.2.6. Pharmacokinetic properties (absorption, distribution, metabolism and excretion (ADME)) and toxicity of potential inhibitors within the body were predicted by the PreADMET version 2.0. The obtained results point out that the compound, coded 2518, was discovered as a potential inhibitor that has good human intestinal absorption, weakly bound to plasma proteins as well as is negative to mutagenicity and carcinogenicity. This rational inhibitor would be further studied in order to contribute informations finding new anti-HIV drugs.


Sign in / Sign up

Export Citation Format

Share Document