Review on the Compatibility of Non-Metal Materials in Automotive Components of Diesel Engine Vehicles with Blended Biodiesel Fuel

2017 ◽  
Vol 23 (5) ◽  
pp. 4728-4732 ◽  
Author(s):  
Narisa Sa’at ◽  
Ariffin Samsuri ◽  
Khaidzir Hamzah ◽  
Hanizam Sulaiman
Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


2018 ◽  
Vol 1114 ◽  
pp. 012005 ◽  
Author(s):  
Farida Ariani ◽  
Tulus B. Sitorus ◽  
Zulkifli Lubis ◽  
Tugiman ◽  
S Sriadhi

2020 ◽  
Vol 1010 ◽  
pp. 172-177
Author(s):  
Narisa Sa'at ◽  
Ariffin Samsuri ◽  
Noradila Abdul Latif ◽  
Nurul Fitriah Nasir ◽  
Rais Hanizam Madon ◽  
...  

Elastomer is one of the important material for the hoses, sealants and tubes in the components of fuel delivery system in diesel engine vehicles due to the factor of compatibility with diesel fuel. However, concern were arise that presence of alcohol, fatty acid component and other factors such as water content in the alternative fuels which is blended biodiesel fuel and different chemical composition from the diesel fuel may increase further uncertainty to the consumer of diesel engine or diesel engine manufacturers in terms of compatibility issue. Thus this paper intends to assess current and typical test standards on their efficacy of representing the fuel system of diesel engine vehicles. Respectively, ASTM D471 are based on laboratory immersion studies and the experimental conditions are differ from the real service conditions in the fuel system of diesel engine vehicles. Even though number of previous studies regarding to the compatibility of elastomer components has been reported, there is a need to set up the exact material that present in the fuel system of diesel engine vehicles. This is especially right for elastomers since their resistance is mainly depends on their elemental compositions. As such, introduction of the dynamic testing approach that may be applied when assessing the compatibility study between blended biodiesel fuel that simulate the actual fuel system of a diesel engine vehicles before carrying out in the field trials.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


Sign in / Sign up

Export Citation Format

Share Document