Reduction of Heavy Metal Cadmium Accumulation in Rice Grains

2015 ◽  
Vol 9 (5) ◽  
pp. 383-388
Author(s):  
Ding Li ◽  
Bailin Dai ◽  
Xiaoxi Zeng ◽  
Lijian Xu ◽  
Jianxin Tang
Author(s):  
Ying Han ◽  
Qin Ling ◽  
Faqin Dong ◽  
Víctor Resco de Dios ◽  
Zhi Li ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-2
Author(s):  
Liming Sun ◽  
Manman Zheng ◽  
Hongyan Liu ◽  
Shaobing Peng ◽  
Jianliang Huang ◽  
...  

2021 ◽  
Vol 67 (No. 1) ◽  
pp. 55-60
Author(s):  
Xian Xiao ◽  
Yan Zhu ◽  
Yuexiang Gao ◽  
Jing Fu ◽  
Yuan Zhao ◽  
...  

To investigate the effect of microbial inoculum on soil heavy metal immobilisation, pot experiments were conducted with paddy soils contaminated by cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg), respectively. The results showed that the inoculation of Rhodopseudomonas palustris was more effective in the immobilisation of Pb and Cd in soils than the composite of R. palustris and Bacillus subtilis. Interestingly, a lower dosage of inoculum immobilised significantly more heavy metals than the higher dosage, potentially due to the competition of bacteria with limited nutrients. The heavy metal contents in rice grains also supported this finding, as less Pb and Cd were accumulated under the lower dosage. However, there were limited effects of microbial inoculations on the immobilisation of Hg and As. In general, our study indicated the effectiveness of R. palustris in immobilising Pb and Cd in soils and highlighted the importance of determining the optimal dosage of inoculum in bioremediation.  


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li Tang ◽  
Jiayu Dong ◽  
Longtao Tan ◽  
Zhongying Ji ◽  
Yaokui Li ◽  
...  

AbstractCadmium (Cd)-contaminated rice is a serious issue affecting food safety. Understanding the molecular regulatory mechanisms of Cd accumulation in rice grains is crucial to minimizing Cd concentrations in grains. We identified a member of the low-affinity cation transporter family, OsLCT2 in rice. It was a membrane protein. OsLCT2 was expressed in all tissues of the elongation and maturation zones in roots, with the strongest expression in pericycle and stele cells adjacent to the xylem. When grown in Cd-contaminated paddy soils, rice plants overexpressing OsLCT2 significantly reduced Cd concentrations in the straw and grains. Hydroponic experiment demonstrated its overexpression decreased the rate of Cd translocation from roots to shoots, and reduced Cd concentrations in xylem sap and in shoots of rice. Moreover, its overexpression increased Zn concentrations in roots by up-regulating the expression of OsZIP9, a gene responsible for Zn uptake. Overexpression of OsLCT2 reduces Cd accumulation in rice shoots and grains by limiting the amounts of Cd loaded into the xylem and restricting Cd translocation from roots to shoots of rice. Thus, OsLCT2 is a promising genetic resource to be engineered to reduce Cd accumulation in rice grains.


Author(s):  
L.A. Seidman ◽  
G. Bergtrom ◽  
C.C. Remsen

Heavy metal pollutants which enter aquatic ecosystems are of concern because: (1) Metals often accumulate in exposed organisms leading to biomagnification at higher trophic levels. (2) Fitness of aquatic populations may be decreased by sublethal exposures. We are investigating the mechanisms of cadmium accumulation and toxicity in daphnids (planktonic microcrustacea) and chironomid larvae (benthic dipteral. This report focuses on Chironomus thummi.


2005 ◽  
Vol 71 (8) ◽  
pp. 4610-4618 ◽  
Author(s):  
Naghma Naz ◽  
Hilary K. Young ◽  
Nuzhat Ahmed ◽  
Geoffrey M. Gadd

ABSTRACT Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.


Sign in / Sign up

Export Citation Format

Share Document