Research on Anisotropic Fracture Mechanical Behavior of Cortical Bone with Combined Method of Fractal and Gray Level Co-Occurrence Matrix

2021 ◽  
Vol 11 (1) ◽  
pp. 67-75
Author(s):  
Dagang Yin ◽  
Bin Chen ◽  
Huifen Zhou

The irregular fracture surface of cortical bone, which is caused by complex multilevel micro-nanostructure, reflects the mechanical properties and fracture mechanisms. It is of great significance to characterize some characteristic parameters from the fracture surfaces of bone. In this research, anisotropic fracture mechanical properties of bovine femoral cortical bone along transverse, longitudinal and radial direction are firstly obtained by three-point bend experiment. Then the fracture routes and fracture surfaces are observed by scanning electron microscope. The observation shows that the formed fracture surfaces, which are caused by different crack routes, are extremely rough and have complex textures. Lastly, the combined method of fractal and gray level co-occurrence matrix are adopted to describe the morphology of fracture surface of cortical bone objectively and quantitatively. It is shown that the fracture surface of cortical bone has obvious fractal characteristics and four statistical texture feature parameters (contrast,angular second moment, correlation and entropy) of GLCM of fracture surfaces can describe a certain fracture texture character. The relationship between the characteristic parameters and macroscopic mechanical properties are established. The quantitative analysis and automatic class identification for the fracture surfaces of cortical bone can be achieved.

2015 ◽  
pp. 315-333

Abstract This chapter describes the mechanical properties of fully pearlitic microstructures and their suitability for wire and rail applications. It begins by describing the ever-increasing demands placed on rail steels and the manufacturing methods that have been developed in response. It then explains how wire drawing, patenting, and the Stelmor process affect microstructure, and describes various fracture mechanisms and how they appear on steel wire fracture surfaces. The chapter concludes by discussing the effects of torsional deformation, delamination, galvanizing, and aging on patented and drawn wires.


2007 ◽  
Vol 546-549 ◽  
pp. 1643-1648
Author(s):  
Yi Zhong Hong Lv ◽  
Yan Cui

The chemical element and its valence at the fracture surface of SiCp/Al2O3-Al composites synthesized by oxidative infiltration of Al melt were analyzed quantitatively using X-ray photoelectron spectrometer(XPS), the percentage content of various phase at fracture surface was determined accordingly. Additionally, the volume fraction of different phase in the composites was meassured by optical metallographic examination of the three-dimensional section. And then, by the comparison of phase content between fracture surface and section of the composites, the preference for the crack penetrating various phases of the composites was identified ,which in turn micro-fracture mechanisms of the composites were revealed quantitatively. It is proved that SiC particle size has a critical influence on the percent content of co-continuous Al2O3 and Al phases, as well as the micro-fracture mechanisms of this kind of composites. Based on the analysis of micro-fracture mechanisms, the moderate size (about 10μm) of SiC particulate would be beneficial to the mechanical properties of composites, the tested results of mechanical properties under room and elevated temperature verified the hypothesis.


1992 ◽  
Vol 296 ◽  
Author(s):  
M. Yvonne D. Lanzerotfi ◽  
James J. Pinto ◽  
Allan Wolfe

AbstractEnergetic materials are of significant interest for scientific and practical reasons in the extraction (mining) industry, space propulsion, and ordnance. The nature of the fracture process of such materials under high acceleration is of particular interest, especially in ordnance. This paper describes new experimental and analysis techniques that allow us to characterize quantitatively and to compare the fracture surfaces of different energetic materials, and to deduce the specific fracture mechanisms. The techniques are widely applicable to other composite systems. In the materials discussed herein, topographical profiles spaced 1.0 mm apart across the fracture surfaces of two types of Octol have been obtained with a diamond stylus profilometer. Spatial power spectra (wavelengths of 1.0 μm 1.0 cm) have been calculated using a prolate spheroidal data window in the horizontal space domain prior to using a fast Fourier transform algorithm. The spatial power density of the fracture surface profiles is found in general to decrease with increasing spatial frequency over the region of interest, ≈ 1 mm-1 to ≈ 1 cm-1. Quasi-periodic peaks corresponding to HMX particle sizes are observed in the Octol spatial power spectra. These peaks indicate the inhomogeneous HMX grain size distribution in the Octol fracture surfaces. Peaks in the Octol spectra indicate that intergranular fracture often occurs between the TNT and HMX grains. Fractal analysis of the Octol power spectral slopes indicates the regions of deterministic, intergranular failure and the regions of the nondeterministic, trans-granular failure through TNT or HMX grains. This non-deterministic (fractal) failure is chaotic and may indicate the origin of failure in the sample.


2012 ◽  
Vol 31 (6) ◽  
pp. 1628-1630
Author(s):  
Jia-jia OU ◽  
Bi-ye CAI ◽  
Bing XIONG ◽  
Feng LI

2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


2012 ◽  
Vol 06 ◽  
pp. 646-651 ◽  
Author(s):  
Wen Ma ◽  
Fushun Liu

Voids are inevitable in the fabrication of fiber reinforced composites and have a detrimental impact on mechanical properties of composites. Different void contents were acquired by applying different vacuum bag pressures. Ultrasonic inspection and ablation density method were adopted to measure the ultrasonic characteristic parameters and average porosity, the characterization of voids' distribution, shape and size were carried out through metallographic analysis. Effects of void content on the tensile, flexural and interlaminar shear properties and the ultrasonic characteristic parameters were discussed. The results showed that, as vacuum bag pressure went from -50kPa to -98kPa, the voids content decreased from 4.36 to 0.34, the ultrasonic attenuation coefficient decreased, but the mechanical strengths all increased.


Sign in / Sign up

Export Citation Format

Share Document