Effects of Melatonin on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Inflammatory Environment by Regulating Mammalian Target of Rapamycin/Phosphatidylinositol 3-Kinase/Protein Kinase B Signaling

2021 ◽  
Vol 11 (4) ◽  
pp. 749-755
Author(s):  
Chi Zhang ◽  
Yuanhe Wang ◽  
Kang Sun ◽  
Dingzhu Yu ◽  
Shaoqi Tian

Human bone marrow mesenchymal stem cells (BMSCs) differentiation into special cell types is affected by inflammation. Melatonin has various effects such as anti-oxidation and immune regulation. However, melatonin’s effect on BMSCs osteogenic differentiation during inflammation has not been elucidated. Rat BMSCs were isolated and assigned into control group, inflammation group (1 μg/ml lipopolysaccharide, LPS) and melatonin group (100 μM melatonin was added to LPSstimulated BMSCs cells) followed by analysis of BMSCs proliferation by MTT assay, Caspase 3 and ALP activity, expression of Runx2 and OP by Real time PCR, ROS content and SOD activity, TNF-α and IL-1β secretion by ELISA and mTOR/PI3K/AKT signaling protein level by Western blot. LPS action on BMSCs significantly inhibits BMSCs proliferation, promotes Caspase 3 activity, inhibits ALP activity, decreases Runx2 and OP expression and SOD activity, increases ROS content and TNF-α and IL-1β secretion as well as reduced mTOR and p-PI3K level (P <0.05). Melatonin addition significantly reversed the above changes (P <0.05). Melatonin can regulate oxidative stress, inhibit inflammation, and promote BMSCs proliferation and osteogenic differentiation in inflammatory environment by activating mTOR/PI3K/AKT signaling pathway.

2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (9) ◽  
pp. 1304-1310
Author(s):  
Qing Yang ◽  
Lei Wu ◽  
Yang Liu ◽  
Bing Yuan

Chordin-like 1 (CHRDL1) functions in multiple tissues and organs. However, whether CHRDL1 affects bone marrow mesenchymal stem cells (BMSCs) differentiation remain unclear. Rat BMSCs were isolated and divided into control group, CHRDL1 group and CHRDL1 siRNA group followed by analysis of CHRDL1 level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, expression of o Runx2, OC and PPARγ2 by Real time PCR, TGF-β secretion by ELIS, and Wnt5 protein expression by Western blot. CHRDL1 expression was significantly increased in CHRDL1 group, along with significantly promoted cell proliferation, decreased Caspase 3 activity, increased ALP activity and expression of Runx2 and OC, decreased PPARγ2 expression, increased TGF-β secretion and Wnt5 expression compared to control group (P < 0.05). However, CHRDL1 siRNA transfection significantly decreased CHRDL1 expression, inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and Runx2 and OC expression, increased PPARγ2 expression, decreased TGF-β secretion and Wnt5 expression. (P < 0.05). Down-regulation of CHRDL1 expression in BMSCs promotes Wnt5/TGF-β signaling transduction, which in turn increases BMSCs proliferation and osteogenic differentiation. Up-regulation of CHRDL1 expression in BMSCs inhibited the activation of Wnt5/TGF-β signaling pathway, promoted BMSCs apoptosis, and inhibited BMSCs proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (12) ◽  
pp. 1783-1789
Author(s):  
Chungang Dong ◽  
Junyu Wei

Bmi1 is a polycomb histone that regulates stem cells, but the role and mechanism of Bmi1 in bone marrow mesenchymal stem cells (BMSCs) differentiation has not been elucidated. Rat BMSCs were cultured in vitro and randomly divided into control group and inflammation group (treated with LPS). Bmi1 and Bmi1 siRNA were transfected into inflammatory BMSCs, followed by analysis of Bmi1 expression by Real time PCR, cell proliferation by MTT assay, Caspase3 activity, ALP activity, expression of Runx2, OP and PPARγ 2 by Real time PCR, as well as secretion of TNF-α and IL-1β by ELISA. In inflammatory environment, Bmi1 expression was significantly decreased, cell proliferation was significantly inhibited, along with increased Caspase3 activity, decreased ALP activity and the expression of Runx2 and OP, increased PPAR 2 expression and secretion of TNF-α and IL-1β (P < 0 05). Transfection of Bmi1 siRNA into inflammatory BMSCs further significantly aggravated the above changes (P < 0 05). Bmi1 plasmid transfected into inflammatory BMSCs significantly promoted Bmi1 expression and cell proliferation, decreased Caspase3 activity, increased ALP activity and expression of Runx2 and OP, decreased PPAR γ2 expression and TNF-α and IL-1β secretion (P < 0 05). Bmi1 expression is reduced in BMSCs under inflammation. Up-regulation of Bmi1 can inhibit the secretion of inflammatory factors, regulate the proliferation and apoptosis of BMSCs, and promote the proliferation and osteogenic differentiation of BMSCs.


2019 ◽  
Vol 9 (12) ◽  
pp. 1776-1782
Author(s):  
Yongyi Xu ◽  
Lei Chen

The distal low homeobox 3 (DLX3) regulates the bone marrow mesenchymal stem cells (BMSC) osteogenic differentiation. However, whether DLX3 affects osteoporosis (OP) remains unclear. An OVX-induced OP rat model was constructed and DLX3 plasmid was injected followed by analysis of bone mineral density and ALP activity. Rat BMSCs were isolated and divided into control group, OP group and DLX3 group (transfected with DLX3 plasmid) followed by analysis of chondrocytes survival rate by MTT assay, Caspase 3 activity, type I collagen and Osterix expression by Real time PCR and -catenin level by Western blot. DLX3 expression was significantly down-regulated in OP rats with deceased bone density and ALP activity compared to sham group (P < 0 05). When DLX3 was transfected into OP rats, DLX3 expression was significantly up-regulated with increased bone density and ALP activity compared with OP group (P < 0 05). BMSCs survival was significantly decreased in OP group and Caspase 3 activity was significantly increased with downregulated type I collagen, Osterix and -catenin (P < 0 05). However, transfection of DLX3 plasmid into OP group BMSCs cells can significantly reverse the above changes, compared to OP group (P < 0 05). DLX3 expression is reduced in osteoporosis. Up-regulation of DLX3 can promote osteogenic differentiation of BMSCs by regulating typical Wnt signaling, promote differentiation into osteoblasts, increase bone density increase, and then ameliorate osteoporosis.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


2019 ◽  
Vol 9 (10) ◽  
pp. 1429-1434
Author(s):  
Qing Yang ◽  
Cheng Li ◽  
Manli Yan ◽  
Chunhua Fang

Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into different types of cells. SOX9 involves in the development and progression of various diseases. Our study aims to assess SOX9's effect on osteogenic differentiation of BMSCs and its related regulatory mechanisms. Rat BMSCs were isolated and randomly divided into control group, SOX9 group and SOX9 siRNA group, which was transfected with pcDNA-SOX9 plasmid or SOX9 siRNA respectively followed by analysis of SOX9 expression by Real time PCR, cell proliferation by MTT assay, Caspase3 and ALP activity, GSK-3β expression and Wntβ/Catenin Signaling pathway protein expression by Western blot, and expression of osteogenic genes Runx2 and BMP-2 by Real time PCR. Transfection of pcDNA-SOX9 plasmid into BMSCs significantly inhibited cell proliferation, promoted Caspase3 activity, decreased ALP activity and downregulated Runx2 and BMP-2, increased GSK-3β expression and decreased Wntβ/Catenin expression protein expression (P< 0.05). SOX9 siRNA transfection significantly promoted cell proliferation, inhibited Caspase3 activity, increased ALP activity and upregulated Runx2 and BMP-2, downregulated GSK-3β and increased Wntβ/Catenin expression. SOX9 regulates BMSCs proliferation and osteogenic differentiation through Wntβ/Catenin signaling pathway.


2021 ◽  
Author(s):  
Gaoying Ran ◽  
Wei Fang ◽  
Lifang Zhang ◽  
Yuting Peng ◽  
Jiatong Li ◽  
...  

Objectives: Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and their mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs. Methods: The optimum concentrations of IGF-IC and P24 were explored. The effects of the two polypeptides on the proliferation and osteogenic differentiation of BMSCs were examined using the Cell Counting Kit-8 (CCK-8), Alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qPCR, and western blotting. In addition, specific pathway inhibitors were utilized to explore whether p38 and JNK pathways were involved in this process. Results: The optimal concentrations of action were both 50 g/ml. IGF-1C and P24 synergistically promoted the proliferation of BMSCs, increased ALP activity and the formation of calcified nodules and upregulated the mRNA and protein levels of osterix (Osx), runt-related transcription factor 2 (Runx2), and osteocalcin (Ocn), phosphorylation level of p38 and JNK proteins also improved. Inhibition of the pathways significantly reduced the activation of p38 and JNK, blocked the expression of Runx2 while inhibiting ALP activity and the formation of calcified nodules. Conclusions: These findings suggest IGF-1C and P24 synergistically promote the osteogenesis of BMSCs through activation of p38 and JNK signal pathways.


Author(s):  
FAM Abo-Aziza ◽  
AA Zaki ◽  
AS Amer ◽  
RA Lotfy

Background: In vitro impact of dihydrotestosterone (DHT) and 17-estradiol (E2) in osteogenic differentiation of castrated rat bone marrow mesenchymal stem cells (rBMMSC) still need to be clarified. Materials and Methods: The viability, proliferation and density of cultured rBMMSC isolated from sham operated (Sham) and castrated (Cast) male rats were evaluated. rBMMSC were cultured with osteogenic differentiating medium (ODM) in the presence of DHT (5,10 nM) and E2 (10,100 nM). Osteogenesis was evaluated by alizarin red staining and measurement of calcium deposition and bone alkaline phosphatase (BALP) activity. Results: Population doubling (PD) of rBMMSC isolated from Cast rats was significantly lower (P<0.05) compared to that isolated from Sham rats. rBMMSC from Cast rats showed low scattered calcified nodule after culturing in ODM and did not cause a significant increase in calcium deposition and B-ALP activity compared to rBMMSCs from Sham rats. Exposure of rBMMSC isolated from Cast rats to DHT (5 nM) or E2 (10 nM) in ODM showed medium scattered calcified nodules with significantly higher (P<0.05) calcium deposition and B-ALP activity. Moreover, exposure of rBMMSC to DHT (10 nM) or E2 (100 nM) showed high scattered calcified nodules with higher (P<0.01) calcium deposition and B-ALP activity Conclusion: These results indicated that the presence of testes might participate in controlling the in vitro proliferation and osteogenic differentiation capacity of rBMMSCs. DHT and E2 can enhance the osteogenic capacity of rBMMSCs in a dose-dependent manner. Based on these observations, optimum usage of DHT and E2 can overcome the limitations of MSCs and advance the therapeutic bone regeneration potential in the future.


2019 ◽  
Vol 9 (11) ◽  
pp. 1583-1588
Author(s):  
Shaoting Li ◽  
Jinhe Zhou ◽  
Zhiqing Ye ◽  
Shenglin Wu

Bone marrow mesenchymal stem cells (BMSCs) can be multi-directionally differentiated and are widely used in tissue engineering. 25-hydroxycholesterol (25-HC) can induce osteogenesis and is involved in osteogenic formation. However, the role of 25-hydroxycholesterol in BMSCs is unclear. Rat BMSCs were isolated and divided into control group and 25-HC treatment (2 and 4 μM) group. Cell proliferation was detected by MTT assay. Caspase-3 and ALP activity was analyzed. Real time PCR was done to analyze Runx2, OPN, FABP4 and PPARγ2 expression. Red staining detects the calcified nodule formation. Wnt5 level was detected by western blot and TGF-β secretion was analyzed by ELISA. 25-HC treatment significantly inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and the expression of Runx2 and OPN, increased expression of FABP4 and PPARγ2, decreased formation of calcified nodules, secretion of TGF-β and reduced expression of Wnt5 compared to control group (P < 0.05), and the above changes were significant with the increase of the concentration of 25-HC (P < 0.05). 25-hydroxycholesterol regulates the proliferation and apoptosis of BMSCs by regulating Wnt5/TGF-β signaling pathway, inhibiting the differentiation of BMSCs into osteogenic direction and promoting its adipogenic differentiation.


Sign in / Sign up

Export Citation Format

Share Document