Effect of Rotation on Peristaltic Flow of Fluid in a Symmetric Channel Through a Porous Medium with Magnetic Field

2015 ◽  
Vol 12 (6) ◽  
pp. 934-943 ◽  
Author(s):  
A. M. Abd-Alla ◽  
S. M. Abo-Dahab
2012 ◽  
Vol 12 (05) ◽  
pp. 1250088 ◽  
Author(s):  
DHARMENDRA TRIPATHI ◽  
O. ANWAR BÉG

This article studies the hydromagnetic peristaltic flow of couple stress fluids through the gap between two concentric channels containing a Darcian porous medium, with the inner channel being rigid. A sinusoidal wave propagates along the outer channel. Long wavelength and low Reynolds number assumptions are used. The effects of couple stress parameter, magnetic field, permeability, and the channel ratio width on pressure and frictional forces on the inner and outer channels are depicted graphically. Mechanical efficiency and trapping are also studied. Pressure diminishes with increasing coupling and permeability parameters whereas it increases with Hartmann number and channel width ratio. Applications of the model include transport of complex bio-waste fluids and magnetic field control of gastro-intestinal disorders.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 319
Author(s):  
V. Jagadeesh ◽  
S. Sreenadh ◽  
P. Lakshminarayana2

In this paper we have studied the effects of inclined magnetic field, porous medium and wall properties on the peristaltic transport of a Jeffry fluid in an inclined non-uniform channel. The basic governing equations are solved by using the infinite wave length and small Reynolds number assumptions. The analytical solutions have obtained for velocity and stream function. The variations in velocity for different values of important parameters have presented in graphs. The results are discussed for both uniform and non-uniform channels. 


Sign in / Sign up

Export Citation Format

Share Document